Cuestiones
ayuda
option
Mi Daypo

TEST BORRADO, QUIZÁS LE INTERESEAT21-27

COMENTARIOS ESTADÍSTICAS RÉCORDS
REALIZAR TEST
Título del test:
AT21-27

Descripción:
Txt21 27

Autor:
Txt02
(Otros tests del mismo autor)

Fecha de Creación:
10/01/2018

Categoría:
Ocio

Número preguntas: 163
Comparte el test:
Facebook
Twitter
Whatsapp
Comparte el test:
Facebook
Twitter
Whatsapp
Últimos Comentarios
No hay ningún comentario sobre este test.
Temario:
1. Cual de los siguientes componentes del sistema neumático se utiliza para regular neumáticamente el flujo de aire extraído del fan del motor para mantener la temperatura el bleed air en 200° C a la salida del precooler. a. La Engine bleed valve. b. La APU bleed valve. c. La overpressure valve OPV. d. La fan air valve FAV.
2. Con todas las fuentes de bleed air del avión funcionando, cual de ellas tiene prioridad para alimentar los sistemas de ECS del avión. a. Engine 1 bleed. b. Engine 2 bleed. c. APU bleed. d. Ground cart.
3. Con el sistema neumático operando en condiciones normales (X BLEED switch en posición SHUT) y con el APU bleed encendido (APU bleed PB en posición ON), cual es la posición de la Crossbleed valve. a. Abierta. b. Cerrada. c. Parcialmente abierta (modulando).
4. Cual de los siguientes componentes se utiliza para proteger el sistema neumático, empezando a cerrar cuando la presión del ducto alcanza 75 PSI (completamente cerrada a 85 PSI). a. La Engine bleed valve. b. La APU bleed valve. c. La overpressure valve OPV. d. La fan air valve FAV.
1. What condition will cause that safety valves indication on ECAM CAB PRESS page stays green. a. Both safety valves completely closed. b. Both safety valves not in completely closed position (partially open). c. Any of the safety valves not in completely closed position (partially open).
2. In the cabin pressurization system, what happens if the outflow valve begins to close. a. Cabin altitude increases and its differential pressure decreases. b. Cabin altitude increases and its differential pressure increases. c. Cabin altitude decreases and its differential pressure decreases. d. Cabin altitude decreases and its differential pressure increases.
3. In the air conditioning system, what temperature value is used by the zone controller to regulate the outlet temperature of both air conditioning packs through the pack controller, to obtain the desired temperature in the cabins. a. The highest temperature value selected in any cabin. b. The average of the temperature values selected in all three cabins. c. The lowest temperature value selected in any cabin. d. A temperature value stored in the zone controller memory.
4. Which air conditioning component regulates bleed air pressure to a value higher than cabin pressure, to insure that if it is necessary, the hot air mixes with the cold air from the mixer unit outlet to optimize temperature regulation in the cabins. a. The pack flow control valves. b. The hot air pressure regulating valve. c. The trim air valves. d. The Recirculation fans.
5. Which air conditioning component regulates the airflow at the air conditioning packs inlet and also works as a shutoff valve for the corresponding pack. a. The pack flow control valves. b. The hot air pressure regulating valve. c. The trim air valves. d. The Recirculation fans.
6. Which of the pneumatic system components is used to pneumatically regulate the airflow extracted from the engine fan to keep bleed air temperature in 200°C at the precooler outlet. a. The Engine bleed valve. b. The APU bleed valve. c. The overpressure valve OPV. d. The fan air valve FAV.
7. The outflow valve in the pressurization system, independently of its control (manual or automatic): a. Is pneumatically controlled and pneumatically operated. b. Is electrically controlled and pneumatically operated. c. Is pneumatically controlled and electrically operated. d. Is electrically controlled and electrically operated.
8. With all bleed air sources working, which one has priority to feed the aircraft ECS systems. a. Engine 1 bleed. b. Engine 2 bleed. c. APU bleed. d. Ground cart.
9. With the pneumatic system operating in normal conditions (X BLEED switch in SHUT position) and APU bleed on (APU bleed PB in ON position), which is the position of the Crossbleed valve. a. Open. b. Closed. c. Partially open (modulating).
10. In the air conditioning system, what is the purpose of recirculate a percentage of cabin air in the mixer unit. a. Prevent smells from entering the passenger cabin. b. Use the cabin air to ventilate the avionics compartment. c. Decrease the bleed air requirements to the pneumatic system. d. Control the air temperature inside the mixer unit.
11. Inside the air conditioning packs, which component pneumatically controls the outlet pack temperature at constant 15°C when a complete failure of pack controller exists. a. The primary heat exchanger. b. The main heat exchanger. c. The anti ice valve. d. The bypass valve.
12. What happens when the DITCHING PB in the pressurization panel (overhead) is pressed. a. All valves below the aircraft flotation line are open. b. All valves below the aircraft flotation line are closed. c. All valves above the aircraft flotation line are open. d. All valves above the aircraft flotation line are closed.
13. Which air conditioning system component optimizes cabin temperature regulation, modulating the high temperature bleed air mixed with the cold air at the mixer unit outlet. a. The pack flow control valves. b. The hot air pressure regulating valve. c. The trim air valves. d. The Recirculation fans.
14. The pressurization system safety valves: a. Are pneumatically controlled and y pneumatically operated. b. Are electrically controlled and pneumatically operated. c. Are pneumatically and electrically operated. d. Are electrically controlled and electrically operated.
15. Which of the following components is used to protect the pneumatic system, starting to close when duct pressure reaches 75 PSI (completely closed at 85 PSI). a. The Engine bleed valve. b. The APU bleed valve. c. The overpressure valve OPV. d. The fan air valve FAV.
16. Which component from the pressurization system under normal operating conditions modulates the amount of air discharged overboard from the fuselage to keep the cabin differential pressure in approximately 8 PSI. a. Outflow valve. b. Safety valves. c. Avionics skin air inlet valve. d. Avionics skin air outlet valve.
17. Inside the air conditioning packs, which component collects by centrifugal force the water droplets before they reach the ACM (air cycle machine) turbine. a. ACM compressor. b. The condenser. c. The water extractor. d. The reheater.
18. In the air conditioning system, which air is used in heat exchangers (primary & main) to cool the bleed air provided to air conditioning packs. a. Air coming from engine fan. b. Air coming from engine compressor. c. Air coming from engine turbine. d. Air coming from exterior (ram air).
19. Which component from air conditioning system is used to provide fresh outside air to the mixer unit, to ventilate the cabins with a simultaneous lost of both packs or removal of smoke in emergency conditions. a. The recirculation fans. b. The LP ground inlet. c. The Emergency ram air inlet flap. d. None of the above.
20. What happens if the pressurization system outflow valve begins to open. a. Cabin altitude increases and its differential pressure decreases. b. Cabin altitude increases and its differential pressure increases. c. Cabin altitude decreases and its differential pressure decreases. d. Cabin altitude decreases and its differential pressure increases.
21. Inside the air conditioning packs, which component regulates the pack outlet temperature by modulating the amount of high temperature bleed air mixed with the air from ACM (air cycle machine) turbine output. a. The primary heat exchanger. b. The main heat exchanger. c. The anti ice valve. d. The bypass valve.
22. In the pressurization system and under abnormal operating conditions, which component protects the aircraft structure against excessive positive and negative pressures. a. Outflow valve. b. Safety valves. c. Avionics skin air inlet valve. d. Avionics skin air outlet valve.
23. What failure condition causes zone temperature to be kept at 24°C and the legend ALTN MODE displayed on ECAM bleed page. a. Failure in the primary computer of pack controller. b. Failure in the primary & secondary computers of pack controller. c. Failure in the primary computer of zone controller. d. Failure in the primary & secondary computers of zone controller.
24. Which of the following conditions will cause the pack flow control valve to be commanded electrically to the closed position. a. Pack overheat. b. Reverse flow. c. Lack of bleed air pressure. d. Engine start.
25. What action is carried out by the pack controller if a signal from the zone controller is received to decrease the pack outlet temperature. a. The ram air flaps (inlet & outlet) are commanded to a more open position and the bypass valve to a more closed position. b. The ram air flaps (inlet & outlet) are commanded to a more closed position and the bypass valve to a more open position. c. The ram air flaps (inlet & outlet) are commanded to a more open position and the bypass valve to a more open position. d. The ram air flaps (inlet & outlet) are commanded to a more closed position and the bypass valve to a more closed position.
1. Que componente del sistema de aire acondicionado se encarga de regular la presión del bleed air a un valor superior a la presión de la cabina, para asegurar que, de ser necesario, se mezcle con el aire frío a la salida de la mixer unit y así optimizar la regulación de temperatura de las cabinas. a. Las pack flow control valves. b. La hot air pressure regulating valve. c. Las trim air valves. d. Recirculation fans.
2. La desconexión de cualquier IDG del accessory gearbox del motor en vuelo es una situación irreversible durante el resto del vuelo, ya que el IDG solo puede ser reconectado en tierra y con el motor estático. a. Verdadero. b. Falso.
3. Cual es la función de los GCU (generator control unit): a. Monitorear y controlar los parámetros de funcionamiento del GEN 1 & GEN 2. b. Monitorear y controlar los parámetros de funcionamiento del GEN 1, GEN 2 y APU GEN. c. Monitorear los parámetros de funcionamiento del External Power. d. Todas las anteriores.
4. Cual de los siguientes componentes del sistema neumático se utiliza para regular neumáticamente el flujo de aire extraído del fan del motor para mantener la temperatura el bleed air en 200° C a la salida del precooler. a. La Engine bleed valve. b. La APU bleed valve. c. La overpressure valve OPV. d. La fan air valve FAV.
5. Con el sistema neumático operando en condiciones normales (X BLEED switch en posición AUTO) y con el APU bleed encendido (APU bleed PB en posición ON), cual es la posición de la Crossbleed valve. a. Abierta. b. Cerrada. c. Parcialmente abierta (modulando).
6. Bajo condiciones de bajas RPM de los motores, que etapa del compresor es la fuente de bleed air para el sistema de ECS del avión. a. Fan stage. b. Booster stage. c. Intermediate Pressure stage. d. High Pressure stage.
7. Cuando se presiona el TEST PB en el fire protection panel (overhead), cual de las siguientes luces se enciende pero solo como chequeo de luces (light test). a. FIRE PB (RED). b. SQUIB (WHITE). c. DISCH (AMBER). d. MASTER WARNING (RED).
8. Cuando se da un engine fire warning, como se descarga la botella extintora en el motor o APU. a. Liberando el FIRE PB después de haber presionado el AGENT PB. b. Presionando el AGENT PB después de haber liberado el FIRE PB. c. Solo presionando el FIRE PB correspondiente. d. Solo presionando el AGENT PB correspondiente.
9. Que componentes del sistema de flight controls permiten controlar al avión en los ejes de pitch y roll, aún con una pérdida completa de computadoras (ELAC’s, SEC’s y FAC’s). a. Slats/Flaps y ailerons.. b. Ailerons y THS (trimmable horizontal stabilizer). c. Elevators y rudder. d. Rudder y THS.
10. Que superficies secundarias del sistema de flight controls asisten a los ailerons para realizar movimientos alrededor del eje longitudinal del avión. a. Ground spoilers. b. Speed brakes. c. Roll spoilers. d. Slats/flaps.
11. Cuales spoilers se utilizan como roll spoilers (en cada ala). a. Spoilers 2, 3, 4 y 5. b. Spoilers 2, 3, y 4. c. Spoilers 4 y 5. d. Spoilers 1, 2, 3, 4 y 5.
12. Que superficies secundarias se utilizan para incrementar la curvatura y áerea del ala para compensar la generación de lift (sustentación), especialmente durante aquellas etapas de vuelo cuando la velocidad del avión es más baja. a. Ground spoilers. b. Speed brakes. c. Roll spoilers. d. Slats/flaps.
13. En la página de Fuel de ECAM cuando se inicializa la indicación de FUEL USED de los motores nuevamente a Cero: a. Al apagar completamente el sistema. b. Al siguiente Refueling del avión. c. Al siguiente arranque de motores (engine start). d. Después del apagado de los motores (engine shutdown).
14. Con la siguiente configuración: avión en tierra, slats extendidos, MODE SEL PB en fuel control panel en AUTO mode; que fuente alimenta los motores 1minuto después del engine start? a. El center tank. b. Los wing tank inner cells. c. Los wing tanks outer cells. d. Todos los anteriores.
15. Cual es la función de las intercell transfer valves cuando éstas se accionan: a. Permitir el flujo de combustible del center tank hacia los inner cells. b. Permitir el flujo de combustible de los inner cells hacia los outer cells. c. Permitir el flujo de combustible de los outer cells hacia los vent surge tanks. d. Permitir el flujo de combustible de los outer cells hacia los inner cells.
16. Si falla la electric pump del sistema Azul en vuelo, el sistema hidráulico Azul: a. Se pierde durante del resto del vuelo. b. Puede ser recobrado extendiendo la RAT. c. Puede ser recobrado por medio de la PTU. d. (b) y (c) son correctas.
17. Bajo condiciones normales de operación y el PTU PB en posición AUTO, la power transfer unit funciona automáticamente: a. Al perderse el sistema Azul. b. Cuando la diferencia de presión entre los sistemas Azul y Amarillo es de 500 PSI. c. Cuando la diferencia de presión entre los sistemas Verde y Amarillo es de 500 PSI. d. Manualmente colocando el PTU PB en la posición ON.
18. Cuando se extenderá automáticamente la RAT en tierra: a. Cuando se da una pérdida completa de los sistemas hidráulicos. b. Cuando la presión de salida de la electric pump del sistema azul se encuentre abajo de 1450 PSI. c. Cuando se da la pérdida de los generadores eléctricos principales (Engines & APU). d. Ninguno de las anteriores.
19. En que consisten los Attention Getters: a. Luz roja Master warning. b. Lus amber Master Caution. c. Alarmas audibles (Aural warnings). d. Todos los anteriores.
20. Cual de las siguientes computadoras se encarga de generar (producir) la información desplegada en las pantallas del EFIS (Electronic Flight Instrument System) y el ECAM : a. SDAC (Sytem Data Acquisition Concentrator). b. DMC (Display Management Computer). c. FWC (Flight Warning Computer).
1. What happens in flight if there is a fault in GEN 1 with the BUS TIE PB in the OFF position. a. The AC ESS BUS is lost and can not be energized. b. The AC ESS BUS is lost momentarily, but can be re-energized setting the AC ESS FEED PB in ALT position. c. The AC BUS 1 is lost momentarily, but can be re-energized setting the AC ESS FEED PB in ALT position. d. The AC ESS BUS is lost momentarily, but can be re-energized starting the APU GEN.
2. With the aircraft flying in emergency configuration, which of the following components generates 115 VAC voltage, one phase, 400 Hz to feed directly the AC ESS BUS and the DC ESS BUS through the ESS TR: a. The CSM/G (constant speed motor/generator). b. The TR (transformer rectifier). c. The static inverter. d. The IDG (integrated drive generator).
3. What sources can be used to feed the AC ESS BUS, and how this transfer from the normal source to the alternate source can be accomplished: a. Normal source: DC BAT BUS 1; alternate source: ESS TR; MANUAL TRANSFER. b. Normal source: DC BUS 2; alternate source: DC BUS 1; AUTOMATIC TRANSFER. c. Normal source: AC BUS 1; alternate source: AC BUS 2; MANUAL TRANSFER. d. Normal source: AC BUS 1; alternate source: AC BUS 2; AUTOMATIC TRANSFER.
4. What condition causes the automatic extension of the RAT (Ram Air Turbine) to generate electrical power: a. Lost of AC BUS 1 (bus de-energized). b. Lost of AC BUS 2 (bus de-energized) c. Airspeed more than 100 Knots. d. All of the above.
5. Which of the following components monitors the charge operation of the batteries and control opening/closure of the corresponding battery contactor, depending of the battery charge status or fault condition (BATT PB in AUTO position). a. The GCU (generator control unit). b. The GPCU (ground power control unit). c. The BCL (battery charge limiter). d. The ESS TR.
6. Under normal operating conditions, with the engines shutdown (GEN 1 & GEN 2 PB in AUTO position), APU running (APU GEN PB in AUTO position) and external power available (EXT PWR PB in AVAIL position), which source has the priority to feed aircraft electrical network busses: a. GEN 1. b. GEN 2. c. APU GEN. d. EXTERNAL POWER.
7. In normal operating conditions which of the following components converts the 115 VAC voltage, 400 Hz from the AC BUS 1 & 2 into 28 VDC to feed the DC BUS 1 & 2 : a. The CSM/G (constant speed motor/generator). b. The TR (transformer rectifier). c. The static inverter. d. The IDG (integrated drive generator).
8. What is the function of the GPCU (ground power control unit): a. Monitor and control the main parameters of GEN 1 & GEN 2. b. Monitor and control the main parameters of GEN 1, GEN 2 & APU GEN. c. Monitor the main parameters of External Power. d. All of the above.
9. In electrical emergency configuration (batteries only) which source powers the essential busses: a. BAT 1 feeds directly the DC ESS BUS and BAT 2 the AC ESS BUS through the static inverter. b. BAT 1 feeds the DC ESS BUS through the static inverter and BAT 2 the AC ESS BUS directly. c. BAT 1 feeds directly the AC ESS BUS and BAT 2 the DC ESS BUS through the static inverter. d. BAT 1 feeds the AC ESS BUS through the static inverter and BAT 2 the DC ESS BUS directly.
10. Which of the following components accomplishes the connection/disconnection of the external power to the aircraft electrical network: a. The GLC (generator line contactor). b. The EPC (external power contactor). c. The BTC (bus tie contactor). d. None of the above.
11. What happens in the aircraft DC network when there is a fault condition in TR2: a. DC BUS 2 and DC ESS BUS are fed by DC BUS 1 through the DC BAT BUS. b. DC BUS 1 and DC ESS BUS are fed by DC BUS 2 through the DC BAT BUS. c. DC BUS 2 is fed by DC BAT BUS and DC ESS BUS by AC ESS BUS through the ESS TR. d. DC BUS 1 is fed by DC BAT BUS and DC ESS BUS by AC ESS BUS through the ESS TR.
12. With the aircraft in flight and with only one electrical generator operative, what happens to the circuits that power the galleys. a. The main & secondary galley circuits are energized normally. b. The power to both galley main & secondary circuits is automatically shed (Galley Shed). c. The power to the main galley circuit is automatically shed (Galley Shed). d. The power to the secondary galley circuit is automatically shed (Galley Shed).
13. With external power connected to the aircraft (EXT PWR PB in ON position), what happens with the electrical network when the MAINT BUS SWITCH (forward galley area) is set to the ON position: a. The aircraft electrical network is NOT energized and EXT PWR directly energizes the AC GROUND FLIGHT BUS and DC GROUND FLIGHT BUS through TR2. b. The aircraft electrical network IS energized and EXT PWR directly energizes the AC GROUND FLIGHT BUS and DC GROUND FLIGHT BUS through TR2. c. The aircraft electrical network is NOT energized and AC BUS 2 directly energizes the AC GROUND FLIGHT BUS and DC BUS 2 energizes the DC GROUND FLIGHT BUS. d. The aircraft electrical network IS energized and AC BUS 2 directly energizes the AC GROUND FLIGHT BUS and DC BUS 2 energizes the DC GROUND FLIGHT BUS.
14. Where is the location of the IDG’s (integrated drive generator): a. In the avionics compartment. b. On the engines. c. In the main landing gear bay.
15. Which computer form the electrical generation system concentrates the BITE messages and interchanges information with CFDS (centralized fault display system) through the DFDIU (centralized fault display interface unit). a. GCU 1 (IDG 1). b. GCU 2 (IDG 2). c. GCU 3 (APU GEN). d. GPCU (EXT PWR).
16. With the aircraft flying in emergency electrical configuration (RAT extended, Emergency generator running), what condition will cause that only the batteries supply the AC ESS and DC ESS BUSSES. a. RAT retraction. b. Flaps/Slats extension. c. Nose landing gear extension.
17. With the aircraft in only batteries configuration, what happens to AC ESS SHED & DC ESS SHED. a. They are normally energized. b. The AC ESS SHED bus is energized by BAT1 through the essential TR and DC ESS SHED bus by BAT2. c. The AC ESS SHED bus is energized by BAT2 through the essential TR and DC ESS SHED bus by BAT2. d. None of the above.
18. With the aircraft in emergency configuration (no generators), which of the following components converts the 24 VDC voltage from the battery in 115 VAC, one phase, 400 Hz to feed the AC ESS BUS: a. The CSM/G (constant speed motor/generator). b. The TR (transformer rectifier). c. The static inverter. d. The IDG (integrated drive generator).
19. Which will be the status of the EXT PWR receptacle lights with external power connected (EXT PWR PB in AVAIL position) and the MAINT BUS SWITCH (forward galley area) set to ON: a. White light “NOT IN USE” ON and amber light “AVAIL” ON. b. White light “NOT IN USE” OFF and amber light “AVAIL” OFF. c. White light “NOT IN USE” ON and amber light “AVAIL” OFF. d. White light “NOT IN USE” OFF and amber light “AVAIL” ON.
20. What bus supplies directly the power to charge BATT 1 & BATT 2. a. HOT BUS 1. b. HOT BUS 2. c. DC BAT BUS. d. DC ESS BUS.
21. Under normal conditions on ground and the engines running (GEN 1 PB in AUTO position, GEN 2 PB in AUTO position), APU running (APU GEN PB in AUTO position) and external power ON, which is the condition of the BTC’s: a. BTC 1: CLOSED; BTC 2: CLOSED. b. BTC 1: OPEN; BTC 2: OPEN. c. BTC 1: CLOSED; BTC 2: OPEN. d. BTC 1: OPEN; BTC 2: CLOSED.
22. During approach (Landing gear down) and the aircraft in emergency configuration (no normal sources, RAT extended), what source energizes the AC & DC essential busses. a. The CSM/G feeds directly the ESS BUS and the DC ESS BUS through the ESS TR. b. BAT 1 feeds directly the DC ESS BUS and BAT 2 feeds the AC ESS BUS through the ESS static inverter. c. BAT 1 feeds directly the AC ESS BUS through the ESS static inverter and BAT 2 feeds directly the DC ESS BUS. d. None of the above.
23. Which of the following components accomplishes the connection/disconnection of the engine, APU generators to the aircraft electrical network. a. El GLC (generator line contactor). b. El EPC (external power contactor). c. Los BTC (bus tie contactor). d. None of the above.
24. In the ECAM page figure, which is the charge status of batteries 1 & 2: a. Both batteries completely charged. b. BAT 1 charging and BAT 2 completely charged. c. BAT 2 charging and BAT 1 completely charged. d. Both batteries charging.
25. In the ECAM page figure, which TR is supplying the DC ESS BUS: a. TR 1 through DC BAT BUS. b. TR 2 through DC BAT BUS. c. ESS TR directly. d. None of the above.
1. Bajo condiciones normales de operación, con los motores encendidos (GEN 1 PB en posición AUTO, GEN 2 PB en posición OFF), APU encendido (APU GEN PB en posición AUTO) y external power OFF, cual será la condición de los BTC’s: a. BTC 1: CLOSED; BTC 2: CLOSED. b. BTC 1: OPEN; BTC 2: OPEN. c. BTC 1: CLOSED; BTC 2: OPEN. d. BTC 1: OPEN; BTC 2: CLOSED.
2. Cual de los siguientes componentes permite energizar cualquier bus por medio de cualquier fuente (Engine generators, APU generator o External Power), además ante la pérdida de un generador permite transferir los buses de éste al generador que todavía queda operativo en la red: a. El GLC (generator line contactor). b. El EPC (external power contactor). c. Los BTC (bus tie contactor). d. Ninguno de los anteriores.
3. Cuales son las fuentes posibles para energizar el AC ESS BUS, y como se lleva a cabo la transferencia hacia la fuente alterna cuando la fuente normal falla: a. Fuente normal: DC BUS 1; fuente alterna: DC BUS 2; TRANSFERENCIA MANUAL. b. Fuente normal: DC BUS 2; fuente alterna: DC BUS 1; TRANSFERENCIA AUTOMATICA. c. Fuente normal: AC BUS 1; fuente alterna: AC BUS 2; TRANSFERENCIA MANUAL. d. Fuente normal: AC BUS 1; fuente alterna: AC BUS 2; TRANSFERENCIA AUTOMATICA.
4. Bajo condiciones normales de operación, con los motores apagados (GEN 1 & GEN 2 PB en posición AUTO), APU encendido (APU GEN PB en posición AUTO) y external power conectado (EXT PWR PB en posición ON), cual de las fuentes anteriores tiene la prioridad para alimentar los buses de la red eléctrica del avión: a. GEN 1. b. GEN 2. c. APU GEN. d. EXTERNAL POWER.
5. La desconexión de cualquier IDG del accessory gearbox del motor en vuelo es una situación irreversible durante el resto del vuelo, ya que el IDG solo puede ser reconectado en tierra y con el motor estático. a. Verdadero. b. Falso.
6. Cual es la función de los GCU (generator control unit): a. Monitorear y controlar los parámetros de funcionamiento del GEN 1 & GEN 2. b. Monitorear y controlar los parámetros de funcionamiento del GEN 1, GEN 2 y APU GEN. c. Monitorear los parámetros de funcionamiento del External Power. d. Todas las anteriores.
7. Cual de los siguientes componentes se encarga en configuración normal, de convertir el voltaje de 115 VAC, 400 Hz de los AC BUS 1 & 2 en 28 VDC para energizar los DC BUS 1 & 2 : a. El CSM/G (constant speed motor/generator). b. El TR (transformer rectifier). c. El static inverter. d. El IDG (integrated drive generator).
8. Cual de los siguientes componentes se encarga de realizar la conexión/desconexión de los generadores de los motores o APU a la red eléctrica del avión: a. El GLC (generator line contactor). b. El EPC (external power contactor). c. Los BTC (bus tie contactor). d. Ninguno de los anteriores.
9. En donde se encuentra ubicado el CSM/G (constant speed motor/generator): a. En el avionics compartment. b. En el motor. c. En el main landing gear bay d. Ninguno de los anteriores.
10. Cual de los siguientes componentes se encarga en configuración de emergencia (ninguna fuente operando), de convertir el voltaje de 24 VDC de la batería en voltaje de 115 VAC, monofásico, 400 Hz para alimentar el AC ESS BUS: a. El CSM/G (constant speed motor/generator). b. El TR (transformer rectifier). c. El static inverter. d. El IDG (integrated drive generator).
1. When pressing the TEST PB in fire protection panel (overhead), which of the following lights is ON but only as a lamp test. a. FIRE PB (RED). b. SQUIB (WHITE). c. DISCH (AMBER). d. MASTER WARNING (RED).
2. In the event of a fire in any engine or APU, how is the extinguisher bottle discharged in the corresponding engine or APU. a. Releasing the FIRE PB after pressing the AGENT PB. b. Pressing the AGENT PB after releasing the FIRE PB. c. Just by pressing the corresponding FIRE PB. d. Just by pressing the corresponding AGENT PB.
3. What is indicated if the SQUIB white light in the fire protection panel (FIRE PB released out) is ON. a. Automatic discharge of the corresponding extinguisher bottle. b. Manual discharge of the corresponding extinguisher bottle. c. The arming and continuity of the bottle explosive charge circuit. d. None of the above.
4. During a smoke condition in the avionics compartment, what happens when the EXTRACT FAN PB (ventilation panel) is set in OVRD (override) position. a. The blower fan continues to run and the air conditioning system is used as air source to ventilate the avionics compartment. b. The blower fan is stopped and the air conditioning is used as air source to ventilate avionics compartment. c. The extract fan is stopped and the air in the avionics compartment is dumped through the extract valve. d. The extract fan continues to run and the air in avionics compartment is dumped through the extract valve.
5. Which component monitors the smoke detectors installed in the lavatories air extraction duct. a. FDU (fire detection unit). b. SDCU (smoke detection control unit). c. AEVC (avionics equipment ventilation computer). d. All of the above.
6. Which component from the fire extinguishing system detects when any of the fire extinguisher bottles has been manually or thermally discharged (amber DISCH light ON). a. Loop A/Loop B. b. Pressure switch. c. Squib. d. FDU.
7. In the event of an APU fire in flight, the autoextinguishing system will initiate the emergency shutdown sequence and automatically discharge the APU fire extinguisher bottle. a. True. b. False.
8. What kind of test is performed when the TEST PB in the fire protection panel is pressed. a. Fire detection system loop circuits continuity and FDU integrity. b. Explosive charge circuits integrity in the fire extinguisher bottles. c. Fire warnings and indications in the cockpit. d. All of the above.
9. Which one of the responder switches in the fire loop detectors (normally closed) has the function of sensing an internal pressure loss in the sensor and trigger a fault condition for the loop in the cockpit. a. Alarm switch. b. Integrity switch.
10. What result is obtained if any of the FDU (engines or APU) senses a Loop A & Loop B FAULT condition (failure of both loops) with the failures of the loops occurring within a time frame of less than 5 seconds. a. Fire warnings (Fire PB ON, Master warning, Continuos repetitive chime, ECAM warning, etc.). b. Loop fault (only ECAM amber message). c. Fire Det fault (ECAM amber message, Master caution, single chime, etc.). d. There is no consequences in the cockpit.
11. Which is the main function of the FDU (fire detection unit) for the engines and APU: a. To control the fire extinguishing system. b. To control the fire detection system. c. To control the fire detection and fire extinguishing system. d. None of the above.
12. In a cold aircraft configuration (completely de-energized), how is it possible to determine if the APU fire extinguisher bottle has a low pressure condition caused by thermal discharge. a. By means of the amber DISCH light (fire panel). b. By means of the white SQUIB light (fire panel). c. By the absence of the red disc in the fuselage. d. By means of CFDS.
13. What fire warnings is it possible to cancel during a fire condition in the engines. a. Fire PB (overhead). b. Master warning (glareshield). c. Master caution (glareshield). d. Engine fire (Engine start panel).
14. In the event of smoke condition in the avionics compartment, what happens when the GEN 1 LINE PB is set in the OFF position. a. GLC1 is open and GEN1 remains energized. b. GLC1 is open and GEN1 is de-energized. c. GLC1 is closed and GEN1 remains energized. d. GLC1 is closed and GEN1 is de-energized.
15. Where are the engines fire extinguisher bottles located. a. Main landing gear bay. b. In the pylon. c. In the aircraft tail. d. None of the above.
16. Which component monitors the smoke detector installed in the avionics compartment air extraction duct. a. FDU (fire detection unit). b. SDCU (smoke detection control unit). c. AEVC (avionics equipment ventilation computer). d. All of the above.
17. When the “lavatory smoke” warning is activated the fire extinguishing system is automatically discharged in the corresponding lavatory. a. True b. False.
18. What result is obtained if any of the FDU (engines or APU) senses a Loop A & Loop B FAULT condition (failure of both loops) with the failures of the loops occurring within a time frame of more than 16 seconds. a. Fire warnings (Fire PB ON, Master warning, Continuos repetitive chime, ECAM warning, etc.). b. Loop fault (only ECAM amber message). c. Fire Det fault (ECAM amber message, Master caution, single chime, etc.). d. There is no consequences in the cockpit.
19. During a smoke condition in the avionics compartment, what happens when the BLOWER FAN PB (ventilation panel) is set in OVRD (override) position. a. The blower fan continues to run and the air conditioning system is used as air source to ventilate the avionics compartment. b. The blower fan is stopped and the air conditioning is used as air source to ventilate avionics compartment. c. The extract fan is stopped and the air in the avionics compartment is dumped through the extract valve. d. The extract fan continues to run and the air in avionics compartment is dumped through the extract valve.
1. Que superficies secundarias del sistema de flight controls asisten a los ailerons para realizar movimientos alrededor del eje longitudinal del avión. a. Ground spoilers. b. Speed brakes. c. Roll spoilers. d. Slats/flaps.
2. En que consiste la función de aileron droop. a. Deflexión automática hacia abajo de los ailerons cuando los flaps están extendidos. b. Deflexión automática hacia arriba de los ailerons cuando los flaps están extendidos. c. Deflexión automática hacia abajo de los ailerons cuando los slats están extendidos. d. Deflexión automática hacia arriba de los ailerons cuando los slats están extendidos.
3. Que superficies secundarias se utilizan para incrementar la curvatura y áerea del ala para compensar la generación de lift (sustentación), especialmente durante aquellas etapas de vuelo cuando la velocidad del avión es más baja. a. Ground spoilers. b. Speed brakes. c. Roll spoilers. d. Slats/flaps.
4. Que componentes del sistema de flight controls permiten controlar al avión en el eje de roll, con una pérdida completa de las computadoras (ELAC’s, SEC’s y FAC’s). a. El rudder. b. Los ailerons. c. El THS. d. Los spoilers.
5. Si ocurre una falla simultánea de las ELAC 1 y 2, que computadora controla el pitch del avión. a. La FAC 1. b. La SEC1. c. La SEC2 d. Ninguna, el pitch del avión solo puede controlarse a través del THS.
6. Cómo se arma (activa) la función automática de los ground spoilers a través de la speed brake control lever (center pedestal). a. Halando el lever hacia arriba en la posición RETRACTED. b. Presionando el lever hacia abajo en la posición RETRACTED. c. Halando el lever hacia arriba en la posición 1/2. d. Presionando el lever hacia abajo en la posición FULL.
7. Si ocurre una falla simultánea de las FAC 1 y 2, que computadora se encarga de controlar el rudder. a. La SEC 3. b. La ELAC 1. c. Ninguna, el control del rudder se pierde completamente. d. Ninguna, el control se lleva a cabo a través de los rudder pedals y el mechanical control.
8. Cuando una superficie de control posee al menos dos servocontroles, cual de ellos se encuentran funcionando en active mode. a. El servocontrol encargado del movimiento de la superficie. b. El servocontrol que solo sigue el movimiento de la superficie (en standby). c. El servocontrol que está inoperativo. d. Ninguna de las anteriores.
9. Cuales son los únicos servocontroles (actuadores) que son operados eléctricamente. a. Aileron servocontrolers, elevator servocontrolers y THS TRIM servomotors. b. Rudder trim servocontrolers, elevator servocontrolers y THS TRIM servomotors. c. Rudder trim servocontrolers, rudder travel limitation servocontrolers y THS TRIM servomotors. d. Spoilers servocontrolers, elevator servocontrolers y THS TRIM servomotors.
10. Que sucede en condiciones normales si ambos sidesticks son movidos de manera simultánea en la misma dirección o en direcciones opuestas. a. El movimiento de la superficie correspondiente es proporcional a la suma algebraica de las deflexiones de ambos sidesticks. b. El movimiento de la superficie correspondiente es proporcional a la deflexión del último sidestick movido. c. El movimiento de la superficie correspondiente es proporcional a la deflexión del primer sidestick movido. d. El movimiento de la superficie correspondiente es proporcional a la deflexión del sidestick del capitán.
11. Cual es la función del rudder travel limiter. a. Aumentar la deflexión del rudder cuando la velocidad del avión aumenta. b. Disminuir la deflexión del rudder cuando la velocidad del avión disminuye. c. Aumentar la deflexión del rudder cuando la velocidad del avión disminuye. d. Disminuir la deflexión del rudder cuando la velocidad del avión aumenta.
12. Que computadora controla normalmente el movimiento de pitch del avión (elevators y THS). a. ELAC 1. b. ELAC 2. c. SEC 1. d. SEC 2.
13. En que modo de operación se pierden TODAS las protecciones de las leyes de operación del sistema de flight controls. a. Ley normal. b. Ley alterna. c. Ley directa. d. Ninguna.
14. Cuando ocurre una falla simultánea en las ELAC 1 y 2 y en las SEC 1 y 2, que componente controla el pitch del avión. a. El rudder. b. Los ailerons. c. El THS. d. Los spoilers.
15. En tierra (ground mode) el movimiento de todas las superficies de control obedece a ley directa (el movimiento de superficies sigue directamente el input del sidestick) y todas las protecciones están desactivadas. a. Verdadero. b. Falso.
16. Después que ha ocurrido una retracción automática de los flaps (configuración “1+ F” a “1”), que sucede si la velocidad del avión disminuye por debajo de 210 knots. a. Los slats se retraen automáticamente. b. Los flaps permanecen en su posición actual. c. Los flaps se extienden nuevamente de manera automática (flaps 10°). d. Ninguna de las anteriores.
17. Como puede reactivarse el sidestick que ha perdido prioridad en el control del avión. a. Presionando momentámeamente el takeover pushbutton de cualquier sidestick. b. Presionando simultáneamente los takeover pushbutton de ambos sidesticks. c. Moviendo el sidestick desactivado por encima de cierto rango. d. Todas las anteriores.
18. Durante la retracción de los slats/flaps en vuelo, que configuración tendremos al mover la flap lever de la posición 2 a la 1, si la velocidad del avión es menor de 210 knots. a. Slats 18°/flaps 10°, configuración “1+ F”. b. Slats 18°/flaps 0°, configuración “1”. c. Slats 0°/flaps 10°, configuración “F”. d. Slats 0°/flaps 0°, configuración “0”.
19. Como las SFCC’s (slat flap control computers) detectan una condición de asimetría durante la extensión/retracción de los slat o flaps. a. Por medio de la señal proveniente del APPU de una sola ala. b. Comparando la señal proveniente de los APPU de ambas alas. c. Comparando la señal proveniente de los FPPU de ambas alas. d. Comparando la señal proveniente de los IPPU de ambas alas.
20. Que sucede con el control del avión en el eje del roll cuando ambas ELAC 1 y 2 fallan simultáneamente. a. El control del roll es realizado solo con ailerons. b. El control del roll es realizado con ailerons y spoilers. c. El control del roll es realizado solo con spoilers con turn coordination del rudder.
21. Al darse una condición de falla durante la extensión de los flaps (assymetry, runaway or overspeed), los WTB (wing tip brakes) se aplican para bloquear el mecanismo de extensión, como es posible recuperar la operación de los flaps. a. En el aire a través del reset de los WTB por medio de CFDS. b. En tierra a través del reset de los WTB por medio de CFDS. c. En el aire a través del reset del solenoide ubicado en los WTB. d. En tierra a través del reset del solenoide ubicado en los WTB.
22. Que acción es necesario llevar a cabo para tomar y retener la prioridad del control del avión con cualquiera de los sidesticks. a. Presionar y liberar el takeover pushbutton del sidestick correspondiente. b. Presionar el takeover pushbutton por más de 40 segundos del sidestick correspondiente. c. Presionar el takeover pushbutton y mantenerlo presionado mientras se requiera retener la prioridad. d. Todas las anteriores.
23. Durante cual de las siguientes operaciones del rudder existirá movimiento de feedback en los rudder pedals. a. Yaw Damping. b. Turn coordination (banking). c. Rudder trimming. d. Todas las anteriores.
24. Que sucede con la función de rudder travel limitation cuando ambas FAC 1 y 2 fallan y los slats se extienden. a. El rudder travel limitation permanece en la configuración anterior a la falla. b. El rudder travel limitation toma la configuración de high speed (3.5° de rango de movimiento). c. El rudder travel limitation toma la configuración de low speed (25° de rango de movimiento).
25. Durante la extensión de los slats/flaps en vuelo, que configuración tendremos al mover la flap lever de la posición 1 a la 2, si la velocidad del avión es menor de 210 knots. a. Slats 18°/flaps 10°, configuración “1+ F”. b. Slats 18°/flaps 0°, configuración “1”. c. Slats 0°/flaps 10°, configuración “F”. d. Slats 0°/flaps 0°, configuración “0”.
26. Que sucede con el sistema de extensión y retracción de slats/flaps cuando se da una falla de una SFCC (slat flap control computer) o de uno de los motores hidráulicos de las PCU’s (power control units). a. Los slats o flaps con la falla no pueden extenderse/retraerse (slats/flaps inoperativos). b. Los slats o flaps con la falla pueden extenderse/retraerse de manera normal. c. Los slats o flaps con la falla pueden extenderse/retraerse a mitad de la velocidad normal. d. Ninguna de las anteriores.
27. Cuando existe baja presión (falla) en el sistema hidráulico azul, que computadoras controlan el movimiento alrededor del eje longitudinal. a. La ELAC 1 controla ambos ailerons. b. La ELAC 2 controla ambos ailerons. c. La ELAC 1 controla el left aileron y la ELAC 2 el right aileron. d. La ELAC 2 controla el left aileron y la ELAC 1 el right aileron.
28. Cual de los siguientes sensores del sistema de slats/flaps envía las señales de posición de las superficies desplegadas en ECAM. a. Los FPPU (feedback position pick-off units). b. Los IPPU (instrumentation position pick-off units). c. Los APPU (assymetry position pick-off units). d. Los flap sensors.
29. Cuando existe baja presión (falla) en el sistema hidráulico azul, que computadoras controlan el movimiento alrededor del eje lateral. a. La ELAC 1 controla ambos elevators. b. La ELAC 2 controla ambos elevators. c. La ELAC 1 controla el left elevator y la ELAC 2 el right elevator. d. La ELAC 2 controla el left elevator y la ELAC 1 el right elevator.
30. Cual de los siguientes sensores del sistema de slats/flaps se encarga de detectar por medio de proximity sensors una condición de movimiento diferencial entre el inner y el outer flap de la misma ala para la aplicación de los POB (pressure off brakes) del PCU. a. Los FPPU (feedback position pick-off units). b. Los IPPU (instrumentation position pick-off units). c. Los APPU (assymetry position pick-off units). d. Los flap sensors.
1. What secondary surfaces from the flight control system provide assistance to ailerons when making movements around the longitudinal axis of the aircraft. a. Ground spoilers. b. Speed brakes. c. Roll spoilers. d. Slats/flaps.
2. What does the aileron droop function consist of: a. Automatic downward deflection of ailerons when flaps are extended. b. Automatic upward deflection of ailerons when flaps are extended. c. Automatic downward deflection of ailerons when slats are extended. d. Automatic upward deflection of ailerons when slats are extended.
3. What secondary surfaces are used to increase the camber and area of the wing to generate more lift, specially during those flight phases when aircraft speed is low. a. Ground spoilers. b. Speed brakes. c. Roll spoilers. d. Slats/flaps.
4. Which component from flight control system allow the control of the aircraft around the roll axis, with a complete failure of all computers (ELAC’s, SEC’s y FAC’s). a. Rudder. b. Ailerons. c. THS. d. Spoilers.
5. When there is a simultaneous failure of ELAC 1 y 2, which computer controls the pitch movement of the aircraft. a. FAC 1. b. SEC1. c. SEC2 d. None, aircraft pitch can only be controlled through THS.
6. How is the automatic ground spoiler function armed through the speed brake control lever (center pedestal). a. Pulling the lever up in the RETRACTED position. b. Pushing the lever down in the RETRACTED position. c. Pulling the lever up in the 1/2 position. d. Pushing the lever down in the FULL position.
7. When there is a simultaneous failure of FAC 1 y 2, which computer controls the rudder. a. SEC 3. b. ELAC 1. c. None, rudder control is completely lost. d. None, the rudder control is accomplished through the rudder pedals and the mechanical control.
8. When a flight control surface has at least two servocontrols, which of them is working in active mode. a. The servocontrol in charge of surface movement. b. The servocontrol that only follows the surface movement (en standby). c. The servocontrol that is inoperative. d. None of the above.
9. Which are the only servocontrols (actuators) that are electrically operated. a. Aileron servocontrolers, elevator servocontrolers and THS TRIM servomotors. b. Rudder trim servocontrolers, elevator servocontrolers and THS TRIM servomotors. c. Rudder trim servocontrolers, rudder travel limitation servocontrolers and THS TRIM servomotors. d. Spoilers servocontrolers, elevator servocontrolers and THS TRIM servomotors.
10. Under normal operating conditions, what happens when both sidesticks are deflected simultaneously in the same or opposite directions. a. The corresponding surface movement is proportional to the algebraic sum of both sidestick deflections. b. The corresponding surface movement is proportional to the last sidestick deflected. c. The corresponding surface movement is proportional to the first sidestick deflected. d. The corresponding surface movement is always proportional to the captain’s sidestick deflection.
11. What function is accomplished by the rudder travel limiter. a. To increase rudder deflection when aircraft speed increases. b. To decrease rudder deflection when aircraft speed decreases. c. To increase rudder deflection when aircraft speed decreases. d. To decrease rudder deflection when aircraft speed increases.
12. Which computer normally controls the aircraft pitch movement (elevators and THS). a. ELAC 1. b. ELAC 2. c. SEC 1. d. SEC 2.
13. In which mode of operation ALL protections of the flight controls laws are lost. a. Normal law. b. Alternate law. c. Direct law. d. None.
14. When there is a simultaneous failure of ELAC 1 y 2 and SEC 1 y 2, which component controls aircraft pitch. a. Rudder. b. Ailerons. c. THS. d. Spoilers.
15. On ground mode the movement of all flight control surfaces is according to Direct Law (surface directly follows sidestick input) and ALL protections are not active. a. True. b. False.
16. After a flaps automatic retraction (configuration “1+ F” to “1”), what happens if aircraft speed decreases below 210 knots. a. Slats are retracted automatically. b. Flaps stay in their actual position. c. Flaps are re-extended automatically (flaps 10°). d. None of the above.
17. How can a deactivated sidestick be reactivated. a. Pressing momentarily the takeover pushbutton of any sidestick. b. Pressing simultaneously the takeover pushbutton of both sidesticks. c. Moving the deactivated sidestick beyond a given threshold. d. All of the above.
18. During slats/flaps retraction in flight, what aircraft configuration will be achieved when moving the flap lever from position 2 to 1, if the aircraft speed is below 210 knots. a. Slats 18°/flaps 10°, configuration “1+ F”. b. Slats 18°/flaps 0°, configuration “1”. c. Slats 0°/flaps 10°, configuration “F”. d. Slats 0°/flaps 0°, configuration “0”.
19. How an asymmetry condition is detected by SFCC’s (slat flap control computers) during extension/retraction operation of slat or flaps. a. By means of a feedback signal coming from the APPU of a single wing. b. Comparing the feedback signal coming from the APPU of both wings. c. Comparing the feedback signal coming from the FPPU of both wings. d. Comparing the feedback signal coming from the IPPU of both wings.
20. What happens with aircraft control on the roll axis with an ELAC 1 y 2 failure. a. Roll control is achieved with ailerons only. b. Roll control is achieved with ailerons and spoilers. c. Roll control is achieved with spoilers and rudder turn coordination.
21. If the WTB (wing tip brakes) are applied to block the extension mechanism when a failure condition is detected during flaps extension (asymmetry, runaway or overspeed), what actions must be accomplished to recover the flaps. a. Reset the WTB’s through CFDS in flight. b. Reset the WTB’s through CFDS on ground. c. Reset the solenoid located in the WTB’s in flight. d. Reset the solenoid located in the WTB’s on ground.
22. What action must be accomplished to take and retain the priority over aircraft control with any of the sidesticks. a. Press and release the takeover pushbutton from the corresponding sidestick. b. Press the takeover pushbutton from the corresponding sidestick for more than 40 seconds. c. Press the takeover pushbutton and hold it as long as the pilot wants to retain the priority. d. None of the above.
23. Which rudder normal function will cause the rudder pedals to move without pilot input (feedback movement). a. Yaw Damping. b. Turn coordination (banking). c. Rudder trimming. d. All of the above.
24. What happens with the rudder travel limitation function when both FAC 1 y 2 fail simultaneously and the slats are extended. a. The rudder travel limiter stays in the configuration prior to the failure. b. The rudder travel limiter takes the high speed configuration (3.5° travel range). c. The rudder travel limiter takes the low speed configuration (25° travel range).
25. During slats/flaps extension in flight, what configuration will the aircraft take when the flap lever is moved from position 1 to position 2, if aircraft speed is less than 210 knots. a. Slats 18°/flaps 10°, configuration “1+ F”. b. Slats 18°/flaps 0°, configuration “1”. c. Slats 0°/flaps 10°, configuration “F”. d. Slats 0°/flaps 0°, configuration “0”.
26. What happens with slats/flaps extension/retraction system when there is a failure in any of the SFCC (slat flap control computer) or any of the hydraulic motors of the PCU’s (power control units). a. Slats/flaps with the failure condition cannot be extended/retracted (slats/flaps inoperative). b. Slats/flaps with the failure condition can be extended/retracted in normal way. c. Slats/flaps with failure condition can be extended/retracted at half normal speed. d. None of the above.
27. When there is a low pressure condition in the hydraulic blue system, which computer controls aircraft movement around the longitudinal axis. a. ELAC 1 controls both ailerons. b. ELAC 2 controls both ailerons. c. ELAC 1 controls the left aileron and ELAC 2 the right aileron. d. ELAC 2 controls the left aileron and ELAC 1 the right aileron.
28. Which of the following sensors from the slats/flaps system sends its surface position signals to be displayed on ECAM. a. The FPPU (feedback position pick-off units). b. The IPPU (instrumentation position pick-off units). c. The APPU (asymmetry position pick-off units). d. The flap sensors.
29. When there is a low pressure condition in the hydraulic blue system, which computer controls the aircraft movement around the lateral axis. a. ELAC 1 controls both elevators. b. ELAC 2 controls both elevators. c. ELAC 1 controls the left elevator and ELAC 2 the right elevator. d. ELAC 2 controls the left elevator and ELAC 1 the right elevator.
30. Which of the following sensors from the slats/flaps system detects by means of proximity sensors a condition of differential movement between the inner y outer flap of the same wing to applied the PCU’s POB (pressure off brakes). a. FPPU (feedback position pick-off units). b. IPPU (instrumentation position pick-off units). c. APPU (asymmetry position pick-off units). d. Flap sensors.
Denunciar test Consentimiento Condiciones de uso