option
Cuestiones
ayuda
daypo
buscar.php

Preguntas lokas biomoléculas remasterizado

COMENTARIOS ESTADÍSTICAS RÉCORDS
REALIZAR TEST
Título del Test:
Preguntas lokas biomoléculas remasterizado

Descripción:
Recopilación de masterings, examencitos y kahoots (creo)

Fecha de Creación: 2022/06/16

Categoría: Universidad

Número Preguntas: 169

Valoración:(0)
COMPARTE EL TEST
Nuevo ComentarioNuevo Comentario
Comentarios
NO HAY REGISTROS
Temario:

Sugars such as glucose are monomers of polysaccharides that are linked together when covalent bonds form between one ________ group of one sugar and a carbon atom on another sugar. amino. carboxyl. hydroxyl. ester.

Biochemistry is focused on four biological molecules: proteins, carbohydrates, nucleic acids, and lipids. Which can function as polymers?. proteins. carbohydrates. lipids. nucleic acids.

Which elements of the periodic table are considered 1st tier elements (most abundant)?. C,H,O. C,H,O,N. C,H,O,N,P,S.

Classify the organic compounds by the class of their functional group. HOCH2CH3. CH3CH2COOH. C3NH2. CH3CH2OCH2CH3. CH3CH2CH2CHO.

Each of the following is a noncovalent interaction EXCEPT ________. Van der Waals interaction. Carbon-hydrogen bond. Hydrogen bond. Dipole-dipole.

Which of these noncovalent forces in biological systems is usually the strongest?. Hydrogen bonds. Hydrophobic interactions. London dispersion forces. Van der Waals forces.

Which substance do you expect to be most soluble in water?. Nitrogen, N2. Ammonia, NH3. Carbon dioxide, CO2. Methane, CH4.

Micelles, formed by detergents in water, have ________. Hydrophobic interiors and hydrophilic exteriors. Hydrophilic interiors and hydrophobic exteriors. Hydrophilic interiors and exteriors. Hydrophobic interiors and exteriors.

What is the pH of a weak acid that is 0.2% ionized in a 0.2 M solution?. 2.76. 3.39. 3.05. 3.21.

Disulfide bridges can form in proteins ________. Only between cysteine residues side-by-side in the protein sequence. Between cysteine residues that are close in three-dimensional space, but not necessarily close in the primary structure. Between any two methionine or cysteine. Between two cysteine residues in proteins.

The peptide bond is which of the following?. An ether bond. An amine bond. An amide bond. An ester bond.

________ between amide protons and carbonyl oxygens is necessary to stabilize a regular folding of protein secondary structure. Covalent bonding. Organic bonding. Electrostatic bonding. Hydrogen bonding.

The functional organization of proteins where specific complexes of two or more polypeptides are formed is called ________ structure. Primary. Secondary. Tertiary. Quaternary.

To what level of structure do α-helices belong?. Primary. Secondary. Tertiary. Quaternary.

Which statement is NOT true about an α-helix?. It frequently contains proline residues. It is usually right-handed. It is a type of secondary structure. It is stabilized by hydrogen bonding.

Super secondary structures that contain recognizable combinations of α-helices, β-strands and loops (e.g. the Greek Key) are called ________. Folds. Motifs. Homologous regions. Domains.

Proteins structure is broken down into separate levels of organization. The secondary structure of a protein is best described by which statement?. The secondary structure of a protein is the amino acid sequence. Secondary structure of a protein is the adoption of a locally repeating structure. The secondary structure of a protein arises when two or more polypeptide chains folded into tertiary structures interact to form well-defined multisubunit complexes. The secondary structure of a protein is the assembly of local structure elements that associate along their hydrophobic surfaces to give a stably folded structure.

Which of the following statements about α-keratins is FALSE?. Pairs of α-helices twist about each other in a coiled-coil structure held together entirely by hydrophobic interactions. They include a major class of protein that comprises hair, fingernails and animal skin. There is a strip of contiguous hydrophobic surface making a shallow spiral around the helix. Individual molecules are α-helical.

The protein that makes up about a third of the total protein mass in animals is ________. Colágeno. Hemoglobina. B-keratina. Mioglobina.

Fibroin is a β-sheet protein, with a high proportion of which amino acid ________. Glycine. Leucine. Proline. Alanine.

Scurvy results in weakness in collagen fibers because the enzymes that catalyze ________ of proline and lysine residues in collagen require Vitamin C. Carboxylation. Carbonylation. Hydroxylation. Hydration.

Structural proteins that typically assemble into large cables or threads, to provide mechanical support to cells or organisms are classified as ________ proteins. Globular. B-strand. Fibrous. Enzyme.

Which statement(s) about collagen is/are true? 1. Collagen is the most abundant single protein in most vertebrates. 2. Tropocollagen is a double helix of two polypeptide chains. 3. Tropocollagen is the basic unit of a collagen fiber. 1. 2. 3.

Which of the following is CORRECT when considering the tertiary structure of globular proteins?. All parts of the proteins can be classified as helix, β sheet or turns. Hydrophobic residues are normally on the inside and hydrophilic residues are on the outside. β sheets cannot be twisted or wrapped into barrel structures. The amino acid proline never occurs in a region where the polypeptide chain bends or turns.

Proteins cannot self-assemble into a functional conformation after they have been denatured. true. false.

Enzymes can accelerate reactions by ________. Raising the energy for activation. Binding a substrate or substrates. Preventing the removal or addition of protons. Positioning a metal ion to bind only to the substrate.

Which statement about a biological catalyst is true. Catalysts increase the velocity of chemical reactions. Catalysts change the thermodynamic favorability of a reaction. Catalysts shift the equilibrium of a given reaction towards the products. Catalysts are used up during a chemical reaction.

An enzyme that catalyzes conversions of L-sugars to D-sugars is called a(n) ________. Hidrolalsa. Liasa. Sintetasa. Isomerasa.

Oxidases, peroxidases, oxygenase or reductases are all class of ________. Liasas. Sintetasas. Sintasas. Oxidoreductasas.

Match each function with the correct enzyme class. transfer functional groups between molecules. catalyze intramolecular rearrangements. catalyze redox chemistry. catalyze the joining of two molecules together.

In a favorable reaction, the free energy of the products is ________ the free energy of the reactants. Same as. Less than. Greater than. Has no bearing on.

Catalysts affect the ________ of a chemical reaction. Energy of substrate formation. Energy of product formation. Thermodynamics. Energy of activation to the transition state.

In an enzyme reaction involving one enzyme and one substrate, the rate of the reaction depends on ________. Both substrate and enzyme concentrations. The enzyme concentration at first and the substrate concentration later on. Enzyme concentration. Substrate concentration.

The lock and key model of substrate binding and enzymatic catalysis explains ________. Formation of a transition state. The release of product. Substrate specificity. The catalytic mechanism.

The formation of an enzyme-substrate complex tends to be thermodynamically favorable due to ________ interactions between the substrate and enzyme. Non-covalent. Carbon-based. Covalent. Nominal.

The hydrophobic cleft in globular proteins that bind substrate molecules is called the ________. Modulator site. Activity site. Substrate pocket. Active site.

Match each of the following terms from the Michaelis-Menten equation to its correct definition. Vmax. Kcat. Kcat/Km. Km.

Which of the following aid in enzyme catalysis but are NOT part of the protein itself?. Amino acid analysis. Spectroscopy. Cofactors. Titration agents.

Which of the following statements BEST describes the Michaelis-Menton constant KM?. It is numerically equal to the substrate concentration required to reach half maximal velocity for an enzyme-catalyzed reaction. It is numerically equal to the affinity between the enzyme and its substrate. It is a measure of enzyme efficiency. It is a measure of the rate of a catalytic process.

A Lineweaver-Burk plot can be used to determine ________ using initial-rate data for an enzyme-catalyzed reaction. Kcat. Km. Keq. Ksat.

Calculate the value of the maximum velocity for an enzyme-catalyzed reaction that follows Michaelis-Menten kinetics if the initial velocity is 6 mM/s at a substrate concentration of 6 mM. The Km for the enzyme system is 2 mM. 8 mM/s. 4.5 mM/s. 12 mM/s. 8.75 mM/s.

The reason to rewrite the Michaelis-Menten equation (such as the Lineweaver-Burk plot) is to ________. form enzyme kinetic data as a hyperbolic curve. calculate catalytic proficiency. calculate Vmax and Km. distinguish different modes of enzyme inhibition and regulation.

In the Lineweaver-Burk plot of an enzyme reaction, the Km is given by the ________. Negative reciprocal of the x-intercept. y-intercept. x-intercept. Reciprocal of the y-intercept.

The Lineweaver-Burk plot is a double reciprocal plot of 1/v versus 1/[S]. The slope reveals what kind of information?. KM/Vmax. The slope of the Lineweaver Burk plot does not reveal any useful information. 1/Vmax. 1/KM.

Which class of lipids does the following molecule belong to?. fatty acids. waxes. triacylglycerols. glycerophospholipids. sphingolipids. glycosphingolipids. steroids.

Identify similarities and differences between the general structures of glycerophospholipids and sphingolipids. If you were to draw the most basic form of each, which pieces are required to define a lipid as either type?. glycerol. sphingosine. fatty acid. phosphate group. hydrophilic R group.

________ are the simplest lipids but they may be a part of or a source of many complex lipids. Trigliceroles. Carbohidratos. Ácidos grasos.

Most lipids in the average human diet are ________. Triacylglycerols. Saturated fatty acids. Glycerophospholipids. Unsaturated fatty acids.

Adipocytes contain fat droplets that serve to provide an animal with ________. Ability to lower body temperature. Increased cell volume. Chemical energy. Thermal energy.

Liposomes consist of ________ bilayers that enclose an aqueous compartment where drugs can be contained for delivery to specific tissues if target proteins are present. Cholesterol. Phospholipids. Membrane protein. Detergents.

Glycerophospholipids have ________ heads and long ________ fatty acid tails. Polar; hydrophobic. Hydrophobic; hydrophobic. Polar; polar. Hydrophilic; polar.

Triacylglycerols cannot form lipid bilayers because they ________. Cannot associate with cholesterol. Have polar heads. Do not have polar heads. Have hydrophobic tails.

Which of following lipids can be a major component of biological membranes?. Phosphatidic acid. Progesterone. Phosphatidylinositol. Phosphatidylcholine.

Which of the following statements about biological membranes is FALSE?. They are composed of a mixture of lipids and proteins in which lateral diffusion of components is possible. The faces of biological membranes are distinct and usually different in both composition and structure. Phospholipids often require a specialized enzyme to facilitate movement across (flipping) the membrane. Lipids and proteins move laterally at approximately the same rate within the membrane.

What is the role of cholesterol in animal cell membranes?. Widens the temperature range of optimum membrane fluidity. Aids in the transport of small hydrophobic molecules across the membrane. Blocks the association of the fatty acyl chains of phospholipids at high temperature. Is a receptor site for hormones on the surface of membranes.

Phospholipids can move to different places in the same bilayer by ________. Biosynthesis. Increased diffusion. Flippases and floppases. Lateral diffusion.

Cholesterol is an component of mammalian cell membranes. What effect does cholesterol have on the membrane?. Cholesterol does not change the transition (melting) temperature of membranes, but it tightens the transition between gel state and liquid crystalline state. Cholesterol increases the transition (melting) temperature of membranes, but it broadens the transition between gel state and liquid crystalline state. Cholesterol decreases the transition (melting) temperature of membranes, but it broadens the transition between gel state and liquid crystalline state. Cholesterol does not change the transition (melting) temperature of membranes, but it broadens the transition between gel state and liquid crystalline state.

When molecules move down their concentration gradient, they move from where they are more concentrated to where they are less concentrated. true. false.

Diffusion across a biological membrane is called passive transport. true. false.

Facilitated diffusion is a type of _______. passive transport. active transport. phagocytosis (fagocitosis). pinocytosis.

Active transport can move a substance across a membrane against its ________. Proton gradient. Electron gradient. Concentration gradient. pH gradient.

Membrane passive transport and transport by channels and pores requires ________. A protein carrier. Ion gradients. Hexanoic acid. Energy input.

Facilitated diffusion (passive transport) through a biological membrane is ________. Driven by the ATP to ADP conversion. Driven by a concentration gradient. Endergonic. Generally irreversible.

Complete the following sentences. glucose. aldotriose. ketose. ketopentose. aldose. aldohexose.

Classify the carbohydrate tagatose by both the carbonyl group and the number of carbon atoms. ketohexose. aldohexose. ketose. aldose. aldotriose.

Pentoses and hexoses can form stable ring structures by internal ________ formation. Hemiacetal. Hemicationic. Hemiamionic. Hemiketal.

Maltose has a (1→4) α linkage between glucose and ________. galactose. glucose. mannose.

D-glyceraldehyde and L-glyceraldehyde are... enantiomers. anomers. diastereomers. tautomers.

Which of the following sugars would yield a positive Fehling's test (red color change)?. All of the listed responses would yield a positive result. maltose. glucose. lactose.

The storage polysaccharides are ________ in plants and ________ in animals. Starch (almidón), Glycogen. Cellulose, Cellobiose. Amylose, Amylopectin. Galactose, Glucose.

Polysaccharide structure can be varied by differences in ________. Chain length (number of sugars in each polysaccharide). The presence of branching. The kind(s) of sugars in each polysaccharides. All of the options are correct.

Termites and cows have bacteria in their digestive tracts that can obtain glucose from plant cellulose because they have enzymes that can attack ________. α-D-glucoside. Hydrogen bonds in cellulose fibrils. β-D-glucoside. Cellulose branch points.

Transfer of a high-energy phosphoryl group to ADP, resulting in ATP occurs when ________. Phosphoenolpyruvate (PEP) → pyruvate. 1,3-bisphosphoglycerate → 3-phosphoglycerate. 3-phosphoglycerate → 2-phosphoglycerate. Both 1,3-bisphosphoglycerate → 3-phosphoglycerate and phosphoenolpyruvate (PEP) → pyruvate.

The glucose 6-phosphate isomerase reaction is a near-equilibrium reaction. Therefore, at any time in a cell there is ________. An accumulation of fructose 6-phosphate. Little or no glucose- 6-phosphate remaining. About equal amounts of glucose- 6-phosphate and fructose -6-phosphate. All of the above.

Which of the following are products of glycolysis?. ATP. pyruvate. NAD+. NADP+.

What reaction does glucose-6-phosphate isomerase catalyze?. the conversion of glucose-6-phosphate to glucose-1-phosphate. the conversion of glucose-6-phosphate to fructose-6-phosphate. the conversion of glucose-6-phosphate to fructose. None of the listed responses is correct.

What enzyme catalyzes the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate?. phosphofructokinase. fructose-1,6-bisphosphate aldolase. glucose-6-phosphate isomerase. The reaction is spontaneous and does not require an enzyme to catalyze the reaction.

Sort the following enzymes according to whether they are used in glycolysis, gluconeogenesis, or both. hexokinase. pyruvate kinase. triosephosphate isomerase. pyruvate carboxylase. glucose-6-phosphatase.

Determine if this molecules are activators, inhibitors or niether in glycolysis. fructose-1,6-bisphosphate (F-1,6-BP). adenosine diphosphate (ADP). adenosine monophosphate (AMP). adenosine triphosphate (ATP). citrate. glucose-6-phosphate (G-6-P). Acetyl-CoA. pyruvate. guanosine triphosphate (GTP). guanosine monophosphate (GMP).

Determine whether each of the following molecules are activators or inhibitors of gluconeogenesis. glucagon. acetyl-CoA. glucose-6-phosphate (G-6-P). adenosine monophosphate (AMP). insulin. fructose-1,6-bisphosphate (F-1,6-BP). adenosine diphosphate (ADP).

The net energy gain in glycolysis is due to the production of ________. NAD. Phosphoenolpyruvate. NADH. ADP.

The ________ is the site of most gluconeogenesis in mammals. Small intestine. Pancreas. Liver. Cytosol of all cells.

The only known regulatory mechanism for pyruvate carboxylase is ________. Activation by cAMP. Activation by acetyl CoA. Activation by phosphorylation. Activation by NADH.

An intermediate found in gluconeogenesis and not glycolysis is ________. Fructose 1,6-bisphosphate. 2-phosphoglycerate. Oxaloacetate. Phosphoenolpyruvate.

Glucose monomers can be released to fuel energy by degradation of ________. Cellulose. Stored glycogen. Cellobiose. Dextrin.

The pentose phosphate pathway has two primary products. They are ________. Oxaloacetate and acetyl CoA. Sorbitol and fructose. ATP and NADPH. ribose-5-phosphate and NADPH.

The non-oxidative stage of the pentose phosphate pathway produces substances that are intermediates of ________. Glycolysis. Glycogenolysis. The Cori cycle. The citric acid cycle.

Which of these enters the citric acid cycle?. NADH + H+. glucose. acetyl CoA. pyruvate. G3P.

In the citric acid cycle, ATP molecules are produced by _____. cellular respiration. oxidative phosphorylation. substrate-level phosphorylation. photophosphorylation.

Which of these is NOT a product of the citric acid cycle?. ATP. acetyl Co. NADH + H+. FADH2. CO2.

All of the enzymes of the citric acid cycle are located in the ________. Golgi complex. Inner cell membrane. Cytoplasm. Mitochondrion.

The step at which acetyl CoA enters the citric acid cycle is classified as a ________ reaction. Decarboxylation. Condensation. Dehydrogenation. Substrate-level phosphorylation.

The succinate dehydrogenase complex catalyzes ________. The formation of a single hydrogen bond in the oxidation of succinate to fumarate. The formation of a double bond in the oxidation of succinate to fumarate. The formation of a single bond from the oxidation of isocitrate to succinate. The formation of a double bond from the reduction of oxaloacetate.

Which of the following cannot be metabolized to make molecules that can enter the citric acid cycle?. carbohydrates. lipids. proteins. metal ions.

Which cofactor is NOT used by the pyruvate dehydrogenase complex?. Thiamine pyrophosphate. Lipoamide. QH2. FAD.

Which of the following coenzymes participate in the reactions of the pyruvate dehydrogenase complex?. thiamine pyrophosphate (TPP). lipoic acid (lipoamide). Flavin adenine dinucleotide (FAD). Nicotinamide adenine dinucleotide (NAD+). Coenzyme A (CoA).

What type of reaction is the conversion of fumarate to malate?. Hydration. Oxidative decarboxylation. Dehydrogenation. Condensation.

Which enzyme catalyzes the conversion of citrate to isocitrate?. Citrate isomerase. Aldolase. Citrate synthase. Aconitase.

Which of the statement is TRUE for Complex I of the respiratory chain complex?. It receives electrons from oxidation of NADH. It catalyzes the oxidation of cytochrome c. It receives electrons from oxidation of FADH2. It transfers the electrons from coenzyme Q to cytochrome c.

Which of the statement is TRUE for Complex V of the respiratory chain complex?. It pumps electron back to matrix and produces ATP. It is involved in the production of ATP from ADP. It pumps the electrons in to the matrix of mitochondria. It pumps the electrons in to the intermembrane space.

Which electron carrier transfers electron to Complex III?. FADH2. NADH. Coenzyme Q. Cytochrome c.

Cytochrome c, an essential protein of the electron transport chain, is located in the mitochondria. Please identify its specific location. Intermembrane space. Matrix. Outer membrane. Inner membrane.

How many protons are translocated across the inner mitochondrial membrane by complex IV for every pair of electrons passing through the electron transport chain?. 0. 1. 2. 3.

What is TRUE for the process of ATP synthesis by ATP synthase complex?. F1 rotor complex transports the protons across the membrane. The anticlockwise rotation of F1 rotor complex allows the synthesis of ATP molecule. The clockwise rotation of F1 rotor complex allows the synthesis of ATP molecule. F0 complex results in the synthesis of ATP molecule.

CADENA TRANSPORTADORA DE ELECTRONES. No es una pregunta, solo es para recordar donde está cada cosa. <---- Puchale aquí pa continuar.

Cuál de las siguientes afirmaciones explica por qué todos los aminoácidos individualmente son solubles en agua pero no todos los péptidos lo son?. Los grupos de las cadenas laterales R- de los residuos de aminoácidos en los péptidos están cargados a pHs fisiológicos. Todos los residuos de aminoácidos en los péptidos son iones dipolares a pHs fisiológicos. Los grupos R- en todos los aminoácidos pueden interaccionar no covalentemente con el agua a pH 7.4. Todos los péptidos son insolubles en agua. Los aminoácidos son iones dipolares a pHs fisiológicos.

De acuerdo con los residuos mostrados en el siguiente tripéptido, estos residuos se pueden considerar: Polares. No polares. Ácidos polares. Básicos polares.

De acuerdo con los residuos mostrados en el siguiente tripéptido, estos residuos se pueden considerar: Polares. No polares. Ácidos polares. Básicos polares.

El enlace peptídico consiste en una condensación que forma un grupo amida entre los grupos amino y carboxilo de dos aminoácidos y causa la liberación de una molécula de agua. Verdadero. Falso.

Los ácidos grasos saturados son los que cuentan con dobles enlaces. verdadero. falso.

Las cadenas de ácidos grasos de este triglicérido están: saturadas. insaturadas.

Cuál es el proceso metabólico por el cual se obtienen moléculas de energía de los ácidos grasos?. hidrólisis del ATP. alfa-oxidación. beta-oxidación. glucolisis.

Cuál es la conformación del doble enlace en los ácidos grasos?. Trans. Cis.

Identifica el siguiente compuesto: colesterol. glicoesfingolípido. triglicérido. glicoglicerolípido. glicerofosfolípido.

Se puede usar una gráfica de Lineweaver-Burk para determinar_______ usando datos de velocidad inicial para una reacción catalizada por enzimas. Kcat. Ksat. Km. Keq.

La hipótesis _______ sugiere que una enzima puede inducir la distorsión del sustrato o que el sustrato puede inducir cambios conformacionales en la enzima que estabilizan el estado de transición. Ajuste concertado. Ajuste llave-cerradura. Ajuste secuencial. Ajuste inducido.

La formación de un complejo enzima-sustrato tiende a ser termodinámicamente favorable debido a las interacciones ________ entre el sustrato y la enzima. no-covalentes. nominales. covalentes. Basadas en carbono.

Los catalizadores afectan la ______ de una reacción química. Termodinámica. Energía de formación del sustrato. Energía de activación al estado de transición. Energía de formación de producto.

Los inhibidores de enzimas irreversibles unen ______ a la enzima. covalentemente. no-covalente. reversible.

Selecciona TODOS los aminoácidos que tengan un centro quiral: treonina. isoleucina. metionina. glicina. alanina.

Los aminoácidos con cadenas alifáticas no polares son más probables de encontrar en la estructura externa de las proteínas. verdadero. falso.

Qué tipos de transporte celular siguen el gradiente de concentración?. Difusión facilitada. Transporte activo primario. Transporte activo secundario. Difusión.

Una molécula anfifílica/anfipática está conformada por un grupo polar y uno no polar. Falso. Verdadero.

Cuál de las siguientes enzimas es la más rápida?. Papain, Kcat = 10. Carbocypeptidase, Kcat = 102. Kinase, Kcat = 103. Catalase, Kcat = 107.

Cuál de los siguientes elementos ayuda en la catálisis enzimática pero NO es parte de la proteína en si?. Cofactores. Aminoácidos básicos. Holoenzima. Apoenzima.

Suponiendo que el aminoácido glutamato tiene unos valores de pK de 2.19, 4.25, y 9.67, para sus grupos alfa-carboxilo, gama-carboxilo y alfa-amino, se puede afirmar que su pI valdrá: 3.22. A un pH neutro de 7.0. 6.96. No se puede determinar con esta información.

Qúe tipo de inhibición se indica en los datos graficados a continuación?. Competitiva. Acompetitiva. No competitiva. Irreversible.

Para los aminoácidos con grupos R neutros, a un pH inferior al del pI del aminoácido, las moléculas de los aminoácidos en solución: Tendrán iguales concentraciones de cargas positivas y negativas. Tendrán una carga neta negativa. Tendrán una carga neta positiva. Tendrán una carga neta nula. No tendrán grupos cargados.

En relación con la estructura y propiedades de los aminoácidos es cierto que: Glicina no presenta actividad óptica. Isoleucina contiene grupos tiólicos. Alanina es dicarboxílico. Metionina contiene dos grupos amino. Ornitina es muy abundante en proteínas.

Qué tipo de enlace utiliza la estructura primaria de las proteínas para su formación?. Todas las anteriores. Interacciones electrostáticas. Puentes de hidrógeno. Fuerzas de Van der Waals. Enlace peptídico.

Selecciona los componentes de los Glicerofosfolípidos (fosfoglicéridos). Ácidos grasos. Esfingosina. Grupo fosfato. Ázucar. Glicerol.

Selecciona TODAS las características que describen a los lípidos. Conformados por C,H,O. Hidrofóbicos. Son sintetizados en el núcleo. Contienen grupos hidrofílicos. Pueden contener nitrógeno y fosforo. Forman vesículas. Forman dobles hélices.

Qué utiliza el co-transporte (transporte activo secundario) como fuente de energía?. Gradiente electroquímico generado por el transporte pasivo. Gradiente de concentración generado por el transporte activo. Gradiente de concentración generado por el transporte pasivo. Gradiente electroquímico generado por el transporte activo.

Selecciona al ácido graso insaturado que contiene 2 dobles enlaces. ** el /\ es el triángulo jeje. 16:3,7c/\2. 16:3c/\9,12,15. 16:2c/\9,12,. 16:1c/\9.

La constante de Michaelis, Km, es igual a _______: Concentración de sustrato cuando la velocidad es igual a la mitad de su valor máximo. Velocidad máxima que puede alcanzar cualquier reacción enzimática dada. Velocidad máxima dividida por dos.

Elige la definición de Zwitterion. Compuesto químico eléctricamente neutro sin cargas. Compuesto químico conformado por dos cargas positivas. Compuesto químico conformado por dos cargas negativas. Compuesto químico eléctricamente neutro, pero tiene cargas formales positivas y negativas sobre átomos diferentes.

Identifica el siguiente compuesto. glicerofosfolípido. glicoglicerolípido. triglicérido. flicoesfingolípido. colesterol.

Identifica el siguiente compuesto. glicoglicerolípido. colesterol. triglicérido. esfingolípido. glicoesfingolípido.

Selecciona los diferentes tipos de estructuras que pueden formar los lípidos. Liposoma. Vesícula. Bicapa lipídica. Micela.

Identifica el siguiente compuesto. glicoesfingolípido. glicerofosfolípido. colesterol. glicoglicerolípido.

Respecto a las propiedades de los aminoácidos, es cierto que: Los aminoácidos ácidos tales como la leucina son fuertemente apolares y, por tanto, se hidratan por el entorno acuoso que les rodea. La cisteína se forma por la producto de oxidación de dos cadenas laterales de cistina. Todos los aminoácidos incorporados por los organismos a las proteínas pueden existir en las formas D- y L-. La cadena lateral de la tirosina está constituida por un anillo aromático no hidroxilado. La isoleucina tiene una tendencia mucho mayor a pasar desde el agua a un solvente de hidrocarburos, que la glicina.

Identifica el siguiente compuesto. colesterol. esfingolípido. glicerofosfolípido. glicoglicerolípido. glicoesfingolípido.

What is the order for the flow of electrons trough the electron transport chain in mitocondria?. Cytochrome c, coenzyme Q, NADH, succinate, oxygen. Oxygen, cytochrome c, coenzyme Q, succinate, NADH. Succinate, NADH, cytochrome C, coenzyme Q, oxygen. NADH, succinate, coenzyme Q, cytochrome C, oxygen.

Which is a component of complex l?. TPP. FAD. CoQ. FMN.

In total, how many molecules of NADH and FADH2 ar eproduced during the oxidative metabolism of one molecule of glucose. 14 and 4. 12 and 2. 8 and 4. 10 and 2.

The number of electrons carried by coenzyme Q at a time during the electron transport chain. 1. 2. 3. 4.

Qué es la gluconeogénesis?. Vía catabólica donde se oxida la glucosa. Vía anabólica donde se oxida la glucosa. Vía catabólica donde se sintetiza la glucosa. Vía anabólica donde se sintetiza la glucosa.

Selecciona el órgano y órganos que llevan acabo la gluconeogénesis. Testículos. Eritrocitos. Hígado. Músculos. Médula del riñón.

Cuál es la enzima encargada de catalizar la reacción de oxalacetato a fosfoenolpiruvato?. Piruvato carboxilasa. Malato deshidrogenasa. Fosfoenol piruvato carboxiquinasa. Piruvato quinasa.

La enzima fructosa-1,6-bifosfatasa convierte la frustosa-1,6-bifosfato a fructosa-6-fosfato por una reacción de hidrólisis. verdadero. falso.

Si la 6-fosfofructo-2-cinasa/fructosa-2,6-bifosfatasa esta desfosforilada, el domino cinasa(quinasa) está activo y favorece a la vía de glucólisis. verdadero. falso.

La insulina se secreta bajo qué condiciones?. Al recibir alimentos/disponibilidad de substratos. Privación de alimento/substrato.

Considerando la vía completa de glucólisis y las vías que pueden enviar metabolitos para participar en diferentes etapas de la misma, determina qué metabolito se procesaría con mayor rapidez hacia piruvato, tomando como tiempo cero, el momento en el que se entra al ciclo de glucólisis. Considera los puntos de regulación por los que tendrían que pasar y si existe alguno y además una vía en la que pueden evadirlo, toma en cuenta solo cuando este metabolito pasa por el punto de regulación. Fructosa. Glicerol-3-fosfato. Glucosa.

How many ATP molecules are consumed in the hexose stage of glycolysis for every one molecule of glucose?. 0. ATP is produced, not consumed by glycolysis. 1. 2. 3.

Flux through the pentose phosphate pathway is controlled mainly by the ________ ratio in the cell. NAD+/NADH. NADP+/NADPH. ATP/ADP. FAD/FADH2.

The pentose phosphate pathway provides ______ for reductive biosynthesis and ______ for nucleic acid biosynthesis. NADH, ribose-5-phosphate. NADPH, ribose-5-phosphate. NADPH, deoxyribose-5-phosphate. NADH, deoxyribose-5-phosphate.

Much of the regulation of gluconeogenesis is a result of the inhibition of _______. Electron transfer. TCA cycle. Glycolysis. ATP hydrolisis.

_______ is a major energy source for skeletal muscle contraction. Pyruvate. Glycogen. Acetil CoA. Lactate.

The citric acid cycle oxidizes pyruvate, and some of the pathway intermediates are starting materials for many biosynthetic pathways. This means that the citric acid cycle is ________. Amphibolic. Amplifying. Catabolic. Anabolic.

Acetyl CoA is a feed forward activator of the enzyme ________ ensuring sufficient oxaloacetate for the citric acid cycle to continiue-. Pyruvate dehydrogenase. Pyruvate carboxylase. Pyruvate oxidase. Pyruvate kinase.

One substrate level phosphorylation occurs in the citric acid cycle in the reaction catalyzed by _______. Succinyl-CoA synthetase. Allfa-ketoglutarate dehydrogenase. Succinate dehydrogenase. Isocitrate dehydrogenase.

The step at which acetyl CoA enters the citric acid cycle is classified as a ______ reaction. Condensation. Substrate-level phosphorilation. Dehydrogenation. Decarboxylation.

What is the terminal electron acceptor in the electron transport chain and ATP synthesis in mitochondria?. Ozone. Carbon dioxide. Hydrogen peroxide. Oxygen.

What is the name of complex l based on its function in electron transport chain?. NADH-coenzyme Q oxidase. Succinare-coenzyme Q reductase. Succinate-coenzyme Q oxidase. NADH-coenzyme Q reductase.

Both glycolysis and gluconeogenesis are controlled by _______ in response to hormones. 3-phosphoglycerate. Fructose 1,6-biphosphate. Fructose 2,6-biphosphate. Pyruvate.

Gluconeogenesis is the _________. Formation of glucose from simple two and three-carbon precursors. Formation of starches. Result of amylase activity. Formation of glycogen.

Most of the energy released in citric cycle reactions is conserved in _______. ATP. NADH and QH2. GTP. ADP.

Taking ine mole of glucose through glycolysis and the citric acid cycle generates _________. 6 CO2, 8 NADH/H+, 1 FADH2 and 2 ATP. 6 CO2, 10 NADH/H+, 2 FADH2 and 4 ATP. 6 CO2, 10 NADH/H+, 2 FADH2 and 2 ATP. 6 CO2, 8 NADH/H+, 1 FADH2 and 1 ATP.

Which step in the citric acid cycle is a rearrangement reaction?. Fumarate to L-malate. Succinyl CoA to succinate. Glucose 1,6-bisphosphate to fructose 1,6-bisphosphate. Citrate to isocitrate.

Denunciar Test