Estructuras 1/2
![]() |
![]() |
![]() |
Título del Test:![]() Estructuras 1/2 Descripción: Flexion-1 |




Comentarios |
---|
NO HAY REGISTROS |
1498.- Este es aplicable a vigas laminadas y a trabes hechas con placas soldadas. La flexión. Miembros en flexión (vigas y trabes armadas). Cargas transversales o por momentos aplicados en sus extremos. 1499.- Se presenta, casi siempre, acompañada por fuerzas cortantes. Cargas transversales o por momentos aplicados en sus extremos. La flexión. Las resistencias de diseño en flexión, MR. 1500.- Todos los elementos mencionados trabajan principalmente en flexión, producida por. Las resistencias de diseño en flexión, MR. Cargas transversales o por momentos aplicados en sus extremos. En el diseño de miembros en flexión. 1501.- Se determinan con la expresión FR Mn, y las resistencias nominales, Mn, de una viga o trabe de eje recto y sección transversal constante. En el diseño de miembros en flexión. Las resistencias de diseño en flexión, MR. Deformaciones y vibraciones. 1502.- Deben considerarse los estados límite de falla. Deformaciones y vibraciones. En el diseño de miembros en flexión. 0.9. 1503.- Deben considerarse también estados límite de servicio, principalmente por. 0.9. Deformaciones y vibraciones. Cada uno de los patines. 1504.- En todos los casos de este capítulo el factor de reducción de resistencia FR es igual a. Cada uno de los patines. 0.9. Factor de pandeo lateral por flexotorsión, Cb. 1505.- Para miembros con sección transversal con un eje de simetría en curvatura doble, por ejemplo, secciones I con patines de ancho o espesores diferentes, el pandeo lateral por flexotorsión se deberá verificar para. Factor de pandeo lateral por flexotorsión, Cb. Cada uno de los patines. Cb= 1.0. 1506.- Con este factor se incluyen en el diseño los efectos de la variación del momento entre puntos con soporte lateral. Cb= 1.0. Factor de pandeo lateral por flexotorsión, Cb. Cb = 1.0. 1507.- De manera conservadora se puede considerar para el factor de pandeo lateral por flexotorsión, Cb. Cb = 1.0. Cb= 1.0. 1.0. 1508.- Para vigas en voladizo en las que el extremo libre no tiene restricción lateral se considera. 1.0. Cb = 1.0. El momento plástico. 1509.- El factor Cb permite un diseño en flexión menos conservador, por lo que en caso de no cumplir alguno de los requisitos indicados en esta sección, se utiliza el valor conservador de. El momento plástico. 1.0. Cb = 1.0. 1510.- En ningún caso se permite que el máximo momento nominal exceda. Cb = 1.0. El momento plástico. Cb = 2.5. 1511.- Para miembros con secciones doblemente simétricas y sin carga transversal entre los soportes transversales. Cb = 2.5. Cb = 1.0. El momento en un extremo es cero. 1512.- Para momentos extremos iguales y de sentido opuesto (curvatura simple). El momento en un extremo es cero. Cb = 2.5. Método de los cuatro momentos. 1513.- para momentos iguales y del mismo sentido (curvatura doble) y Cb = 1.67 cuando. Método de los cuatro momentos. El momento en un extremo es cero. no contraventeado de la viga. 1514.- Este método permite el cálculo del factor Cb para la mayoría de los casos comunes de variación del momento. no contraventeado de la viga. Método de los cuatro momentos. Cb= 1.0. 1515.- El valor del factor se determina con la ecuación, para lo que requieren los valores absolutos de los momentos en cuatro secciones transversales del tramo. Cb= 1.0. no contraventeado de la viga. Método alterno. 1516.- Este método da resultados no conservadores en los casos en que hay cambios abruptos en el diagrama de momentos, por ejemplo, cuando hay un momento concentrado entre puntos de soporte lateral, en estos casos es aconsejable utilizar el valor conservador. Método alterno. Cb= 1.0. Menor y mayor. 1517.- Este método se aplica a elementos con momentos en los puntos de soporte lateral y sin cargas transversales entre ellos (diagrama de momentos lineal). Menor y mayor. Método alterno. M1/M2. 1518.- De los momentos en los extremos del segmento no soportado lateralmente, tomados en valor absoluto. M1/M2. Menor y mayor. Miembros compactos (tipo 1 o 2). 1519.- Es negativo para tramos que se flexionan en curvatura simple y positivo para los que se flexionan en curvatura doble. Miembros compactos (tipo 1 o 2). M1/M2. Fluencia. 1520.- De sección I con dos ejes de simetría y canales, flexionados alrededor del eje de mayor inercia. Fluencia. Miembros compactos (tipo 1 o 2). La resistencia nominal, Mn. 1521.- El pandeo lateral está impedido en forma continua, L ≤ Lu. La resistencia nominal, Mn. Fluencia. Es el inferior. 1522.- De miembros en flexión cuyo patín comprimido está soportado lateralmente en forma continua, o está provisto de soportes laterales con separación L no mayor que Lu. Es el inferior. La resistencia nominal, Mn. Acciones sísmicas. 1523.- Cuando el sistema de piso proporciona soporte lateral al patín superior de las vigas, debe tenerse en cuenta que en algunos tramos el patín comprimido. Acciones sísmicas. Es el inferior. Pandeo lateral por flexotorsión. 1524.- Este punto puede ser de especial importancia en presencia de. Pandeo lateral por flexotorsión. Acciones sísmicas. Ca = 0. 1525.- Este estado límite no puede presentarse cuando L ≤ Lu. Ca = 0. Pandeo lateral por flexotorsión. Las resistencias nominales Mn. 1526.- En miembros de sección transversal en cajón (rectangular hueca) se toma. Las resistencias nominales Mn. Ca = 0. Tipo 3 o esbeltos (tipo 4). 1527.- Pueden utilizarse sin calcular las longitudes características Lu y Lr. Tipo 3 o esbeltos (tipo 4). Las resistencias nominales Mn. Tipo 1 o 2 o no compacta tipo 3. 1528.- Miembros de sección I de doble simetría con patines no compactos. Tipo 1 o 2 o no compacta tipo 3. Tipo 3 o esbeltos (tipo 4). La resistencia nominal. 1529.- Miembros de sección I de doble simetría alma compacta, flexionados alrededor de su eje de mayor inercia. La resistencia nominal. Tipo 1 o 2 o no compacta tipo 3. Fluencia. 1530.- Es la menor de los correspondientes a los estados límite de pandeo lateral por flexotorsión y de pandeo local del patín comprimido. Fluencia. La resistencia nominal. Pandeo lateral por flexotorsión. 1531.- El pandeo lateral está impedido en forma continua, L ≤ Lu. Pandeo lateral por flexotorsión. Fluencia. Tipo 3. 1532.- Este estado límite no puede presentarse cuando L ≤ Lu. Tipo 3. Pandeo lateral por flexotorsión. Compactas tipo 2 y no compactas tipo 3. 1533.- Secciones con patines no compactos. Compactas tipo 2 y no compactas tipo 3. Tipo 3. Tipo 4. 1534.- En secciones I o H cuyos patines tienen relaciones ancho/grueso comprendidas entre las correspondientes a secciones. Tipo 4. Compactas tipo 2 y no compactas tipo 3. El módulo de sección elástico efectivo del elemento. 1535.- Secciones con patines esbeltos. El módulo de sección elástico efectivo del elemento. Tipo 4. el mismo ancho efectivo en el patín en tensión. 1536.- Se calcula con el ancho efectivo del patín comprimido. el mismo ancho efectivo en el patín en tensión. El módulo de sección elástico efectivo del elemento. Esta sección se aplica a secciones I. 1537.- El módulo de sección de perfiles simétricos respecto al eje de flexión puede calcularse, conservadoramente, utilizando. Esta sección se aplica a secciones I. el mismo ancho efectivo en el patín en tensión. La resistencia nominal, Mn. 1538.- De simple o doble simetría, con almas esbeltas conectadas a la mitad del ancho del patín y flexionadas alrededor del eje de mayor inercia. La resistencia nominal, Mn. Esta sección se aplica a secciones I. tipo 1 o 2. 1539.- Es el valor menor de los correspondientes a los estados límite de fluencia momento plástico y pandeo local de los patines. tipo 1 o 2. La resistencia nominal, Mn. Tipo 3. 1540.- Para secciones con patines compactos. Tipo 3. tipo 1 o 2. Tipo 2 y no compactas tipo 3. 1541.- Para secciones con patines no compactos. Tipo 2 y no compactas tipo 3. Tipo 3. Tipo 4. 1542.- En secciones I, H o canal cuyos patines tienen relaciones ancho/grueso comprendidas entre las correspondientes a secciones compactas. Tipo 4. Tipo 2 y no compactas tipo 3. hollow structural section‖. 1545.- Para secciones con patines esbeltos. hollow structural section‖. Tipo 4. Miembros de sección tubular cuadrada o rectangular. 1546.- HSS es la designación que se les da, en inglés, a estas secciones. Miembros de sección tubular cuadrada o rectangular. hollow structural section. La resistencia nominal, Mn. 1547.- Esta sección se aplica a miembros de sección tubular, cuadrada o rectangular, flexionados alrededor de cualquiera de sus ejes centroidales y principales, con almas compactas o no compactas y patines compactos, no compactos o esbeltos. La resistencia nominal, Mn. Miembros de sección tubular cuadrada o rectangular. Tipo 1 o 2. 1548.- De estos miembros es el menor de los valores correspondientes a los estados límite de fluencia, pandeo local del patín comprimido y pandeo local del alma en flexión pura. Tipo 1 o 2. La resistencia nominal, Mn. Tipo 3. 1549.- Pandeo local del patín comprimido para secciones con patines compactos. Tipo 3. Tipo 1 o 2. Tipo 1 o 2. 1550.- Pandeo local del patín comprimido para secciones con patines no compactos. Tipo 1 o 2. Tipo 3. Tipo 3. 1551.- Pandeo local del alma para secciones con almas compactas. Tipo 3. Tipo 1 o 2. Miembros de sección tubular circular. 1552.- Pandeo local del alma para secciones con almas no compactas. Miembros de sección tubular circular. Tipo 3. La resistencia nominal, Mn. 1553.- Esta sección se aplica a miembros de sección tubular circular con una relación no mayor que 0.45. La resistencia nominal, Mn. Miembros de sección tubular circular. Tipo 2. 1554.- Es el menor de los valores correspondientes a los estados límite de fluencia momento plástico y pandeo local. Tipo 2. La resistencia nominal, Mn. Tipo 3. 1555.- Pandeo local Secciones compactas. Tipo 3. Tipo 2. Tipo 4. 1556.- Pandeo local secciones no compactas. Tipo 4. Tipo 3. Miembros de sección T. 1557.- Pandeo local secciones de paredes esbeltas. Miembros de sección T. Tipo 4. La resistencia nominal, Mn. 1558.- Formados por dos ángulos espalda con espalda cargados en el plano de simetría. La resistencia nominal, Mn. Miembros de sección T. Tensión o en compresión. 1559.- Es el menor de los valores correspondientes a los estados límite de fluencia momento plástico, pandeo lateral por flexotorsión, pandeo local de los patines y pandeo local del alma. Tensión o en compresión. La resistencia nominal, Mn. En tensión. 1560.- Cuando el alma de la T o de los dos ángulos puede estar en. En tensión. Tensión o en compresión. En compresión. 1561.- Es positivo cuando el alma está. En compresión. En tensión. El signo menos. 1562.- Es negativo cuando está. El signo menos. En compresión. tipo 1 o 2. 1563.- Si el borde libre extremo del alma está en compresión en cualquier punto de la longitud no arriostrada, se empleará. tipo 1 o 2. El signo menos. Tipo 3 en compresión por flexión. 1564.- Pandeo local del patín de secciones T para secciones con patines compactos. Tipo 3 en compresión por flexión. tipo 1 o 2. Tipo 4. 1565.- Pandeo local del patín de secciones T para secciones con patín no compacto. Tipo 4. Tipo 3 en compresión por flexión. Compresión por flexión. 1566.- Pandeo local del patín de secciones T para secciones con patines esbeltos en compresión por flexión. Compresión por flexión. Tipo 4. Los ángulos sencillos. 1567.- Pandeo local del alma de secciones T en. Los ángulos sencillos. Compresión por flexión. Los ángulos sencillos. 1568.- En esta sección se tratan con o sin restricción lateral continua a lo largo de su longitud. Los ángulos sencillos. Los ángulos sencillos. Los ángulos sencillos. 1569.- Cuando están restringidos de manera continua contra el pandeo lateral por flexotorsión a lo largo de su longitud, se pueden diseñar determinando la flexión alrededor de los ejes geométricos paralelos a las alas del ángulo, X y Y. Los ángulos sencillos. Los ángulos sencillos. La flexión. 1570.- Sin restricción continua al pandeo lateral por flexotorsión se diseñan considerando la flexión referida a los ejes principales, excepto cuando se permita referirla a los ejes geométricos. La flexión. Los ángulos sencillos. La resistencia nominal, Mn. 1571.- Cuando se presenta alrededor de los dos ejes principales, con o sin carga axial, o cuando actúa alrededor de un solo eje principal y hay carga axial. La resistencia nominal, Mn. La flexión. La flexión. 1572.- Es el menor de los momentos correspondientes a los estados límite de fluencia, pandeo lateral por flexotorsión y pandeo local de las alas. La flexión. La resistencia nominal, Mn. Flexión. |