option

Fundamentos Matemáticos 1er Semestre

INFORMACIÓN ESTADÍSTICAS RÉCORDS
REALIZAR TEST
Título del test:
Fundamentos Matemáticos 1er Semestre

Descripción:
Parcial 1

Autor:
AVATAR

Fecha de Creación:
25/11/2020

Categoría:
Matemáticas

Número preguntas: 24
Comparte el test:
Facebook
Twitter
Whatsapp
REALIZAR TEST
Últimos Comentarios
No hay ningún comentario sobre este test.
Temario:
El número es,2√16) a la vez, un número: natural, racional, irracional y real. natural, irracional y real. natural, entero, racional y real. .
El número que es a la vez, un número natural, entero, racional y real, es: número π ∛64 -3.
La expresión (6 + 8)5 = 6 x 5 + 8 x 5 es un ejemplo de la propiedad: distributiva de la multiplicación respecto a la adición de números racionales. asociativa de la multiplicación respecto a la adición de reales. distributiva de la adición respecto a la multiplicación de números reales. .
Considerando que los números reales son ordenados. Decimos que a es menor que b, y escribimos a<b si a y b son números positivos. b – a es un número positivo. a – b es un número negativo.
Conociendo que A = {x / x -2}, B ={x / x < 4 } y C = {x / -1 < x 5}, el conjunto intersección de los tres conjuntos, es: A∩B∩C={x/-1<x<4} A∩B∩C={x/-1<x≤5} A∩B∩C={x/-1≤x≤5}.
La desigualdad -5 < x ≤ 3 expresada en notación de intervalo, es: [3, -5] (-5, 3] [-5, 3).
Los números reales que no son negativos, en términos de desigualdades, se expresan, como: x < 0 x > 0 x ≥ 0.
Si evaluamos la expresión |-8| - |-8| el resultado que se obtiene es: -16 16 0 .
Sean a, b y c números reales tales que a > 0, b < 0 y c < 0. El signo de la expresión a3 b2 c, es: menos (negativo) no tiene signo (cero) más (positivo) .
La propiedad conmutativa en la multiplicación de números reales, puntualiza que: En la multiplicación, el orden de los factores no altera el producto. Se puede asociar de distintas maneras los factores y se obtiene el mismo resultado. En la multiplicación, el orden de los sumandos, no altera el producto. .
Al analizar los resultados de (-5) (elevado a la 4) y de -5 (elevada a la 4), se puede asegurar que: no existe diferencia, por cuanto (-5) (elevado 4)= 625 y -5 (elevado 4) = 625, son dos potencias equivalentes. no existe diferencia en el resultado, las dos potencias tienen el mismo valor. si existe diferencia, por cuanto (-5) (elevado 4) = 625 y -5 (elevado 4)= - 625, son dos números opuestos. .
La definición a^(-n)=1/a^n nos fundamenta para expresar que 2^(-5)/(-3)^(-4) es igual a -(32/81) 81/32 -32/81.
La ley del producto de potencias con la misma base, faculta para sumar los exponentes cuando las potencias tiene la misma base; ley que, simbólicamente se escribe: a^(m.n)=a^m * a^n a^(m+n)=a^m * a^n a^(m.n)=a^m + a^n.
La ley del producto de potencias con la misma base, faculta para multiplicar los exponentes cuando se tiene la potencia de otra potencia, ley que, simbólicamente se escribe: (a^m)^n=a^m*n a^m*n=a^m a^n (a^m)^n=a^m^n.
El número correspondiente al diámetro de un electrón es alrededor de 0,0000000000004 cm. Esta cantidad, escrita en notación exponencial es: 4*10^-4 cm 4*10^13 cm 4*10^-13 cm.
Próxima Centauri, es la estrella más cercana a nuestro sistema solar, la misma que se encuentra a 4,3 años luz de distancia. Sabiendo que un año luz, distancia que recorre la luz en un año, es alrededor de 5,9 x 10^12 millas, la distancia en millas desde la tierra a esta estrella, es: 2,537*10^-13 millas 2,537*10^13 millas 0,2537*10^13 millas.
El producto de la suma por la diferencia de dos términos es igual a la diferencia de cuadrados de dichos términos, según este producto notable, la expresión (2x^3+3√y)(2x^3-3√y) 4x^9+9y 4x^6-9y 4x^9-9y.
La factorización del trinomio x^2 – xy2 - 12y^4 es (x – 4y)(x + 3y) (x – 4y^2 )(x + 3y^2 ). (x – 3y^4 )(x + 4y). .
La factorización del trinomio 6y^2 + 11y – 21, es: (3y – 3)(2y + 7) (6y + 7)(y - 3) (6y – 7)(y + 3).
La factorización de a^3 – b^6 es igual a: (a – b)(a^2 + ab – b^2 ) (a + b)(a^2 + ab – b^2 ) (a – b^2)(a^2 + ab^2 + b^4 ).
La factorización por agrupamiento de 18x^3 + 9x^2 + 2x + 1, es: (9x^2 + 1)(2x + 1) 9x^2 (2x + 1) (9x^2 + 1)(2x - 1).
La factorización completa de (a^2 – 121)b^2 – (a^2 – 121), es: (a – 11)(a + 11)b^2 (a – 10)(a + 10)b^2 (a – 11)(a + 11)(b + 1)(b – 1).
Una de las posibles formas de factorización de x - 5: (√x+√5)(√x-√5) No es posible (x^2 – 5)(x^3 + 1).
El resultado de la operación (√(x^2+1)+1)(√(x^2+1)-1) , luego de simplificar, es x^2 x^4 x^4-2.
Denunciar test Condiciones de uso
INICIO
CREAR TEST
INFORMACIÓN
ESTADÍSTICAS
RÉCORDS
Otros tests del Autor