Tema 5 Mate
|
|
Título del Test:
![]() Tema 5 Mate Descripción: Tema 5 Mate |



| Comentarios |
|---|
NO HAY REGISTROS |
|
¿Cuáles son los atributos fundamentales de los bloques lógicos?. Color, forma, tamaño y peso. Color, forma, tamaño y grosor. Color, forma, peso y grosor. ¿Qué tipo de formas se utilizan en los bloques lógicos?. Círculo, cuadrado, triángulo y óvalo. Cuadrado, triángulo, círculo y rectángulo. Círculo, rectángulo, óvalo y triángulo. ¿En qué materiales pueden estar hechos los bloques lógicos?. Madera y plástico. Metal y madera. Plástico y metal. ¿Qué facilitan los bloques lógicos?. El trabajo con números. El trabajo con letras. El trabajo de relaciones lógicas. ¿Qué pueden ayudar a desarrollar los bloques lógicos?. Habilidades de escritura. Habilidades de lectura. Habilidades de seriación. ¿En qué edades se profundiza en el reconocimiento e identificación de atributos?. 2-3 años. 4-5 años. 6-7 años. ¿Qué se empieza a hacer en los cursos de 4-5 años con los atributos?. Nombrar los atributos y representarlos mediante dibujos o símbolos. Sumar y restar con los atributos. Multiplicar y dividir con los atributos. ¿En qué cursos se amplía la identificación y simbolización de atributos a tres y cuatro simultáneamente?. 4-5 años. 6-7 años. 8-9 años. ¿Qué se introducen en los cursos de 6-7 años?. Las multiplicaciones. Las negaciones. Las divisiones. ¿Qué se practican en los cursos de 6-7 años?. Transformaciones, correspondencias entre bloques, comparación detallada de atributos y la creación de conjuntos complementarios. Sumas y restas. Multiplicaciones y divisiones. ¿Qué son las regletas Cuisenaire?. Un conjunto de figuras geométricas. Un conjunto de prismas de madera con base cuadrada y longitudes diferentes. Un conjunto de piezas de plástico de diferentes formas. ¿Cuál es la forma de la base de las regletas Cuisenaire?. Circular. Triangular. Cuadrada. ¿Cómo se identifica cada longitud de las regletas Cuisenaire?. Por su color. Por su tamaño. Por su forma. ¿Dónde se suelen vender las regletas Cuisenaire?. En cajas de unas 100 piezas. En cajas de unas 300 piezas. En cajas de unas 500 piezas. ¿En qué se utilizan las regletas Cuisenaire al principio?. En operaciones matemáticas complejas. En juegos libres. En la construcción de modelos a escala. ¿Qué se introduce después del juego libre con las regletas?. La clasificación y agrupamiento. La resolución de ecuaciones. La escritura de números. ¿Qué se trabaja después de la clasificación con las regletas?. Las operaciones de multiplicación. Las seriaciones. La creación de figuras geométricas. ¿Qué paso importante se añade después de la clasificación y seriación?. La ordenación. La medición. La división. ¿Qué se añaden a la ordenación con las regletas?. Las descomposiciones. Las multiplicaciones. Las divisiones. ¿Qué se introduce cuando los niños comprenden las relaciones básicas con las regletas?. El vínculo entre números y colores. Las operaciones de división. La creación de figuras geométricas complejas. ¿Qué se trabaja después de introducir el vínculo entre números y colores?. Las sumas y restas. Las multiplicaciones y divisiones. La geometría avanzada. ¿Qué permiten trabajar las regletas?. La medida. La escritura. La lectura. ¿Para qué son útiles las regletas en los contenidos avanzados?. Para contar números. Para operaciones y propiedades, fracciones y decimales. Para realizar dibujos. ¿Cuál es la primera idea esencial de la enseñanza matemática según la teoría de Dienes?. La estructura lógica de la matemática. La importancia del juego. La abstracción y generalización. ¿Cuál es el primer principio de la teoría de Dienes?. El principio de la constructividad. El principio del dinámico. El principio de la variabilidad matemática. ¿En qué consiste la tercera etapa de la teoría de Dienes?. Juegos isomorfos. Juego libre. Juego dirigido. ¿Qué sigue a la etapa manipulativa en la teoría de Dienes?. La demostración y razonamiento. La representación. La descripción. ¿En qué consiste la etapa final de la teoría de Dienes?. La representación. La descripción. El razonamiento y demostración. ¿Qué explica la teoría de las Situaciones Didácticas?. Cómo se aprende resolviendo problemas. Cómo se memoriza mejor. Cómo se resuelven ecuaciones. ¿Cuáles son los niveles de la taxonomía de Bloom?. Conocer, comprender, aplicar, analizar, evaluar y crear. Sumar, restar, multiplicar y dividir. Leer, escribir, dibujar y pintar. |





